Effect of obstructive sleep apnea on glucose metabolism

in European Journal of Endocrinology
View More View Less
  • 1 Center for Human Nutrition, St. Louis, Missouri, USA
  • | 2 Mallinckrodt Institute of Radiology, St. Louis, Missouri, USA
  • | 3 Department of Neurology, St. Louis, Missouri, USA
  • | 4 Hope Center for Neurological Disorders at Washington University School of Medicine, St. Louis, Missouri, USA

Correspondence should be addressed to B Mittendorfer; Email: mittendb@wustl.edu
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Background

Obstructive sleep apnea (OSA) is prevalent in people with obesity and is a major risk factor for type 2 diabetes (T2D). The effect of OSA on metabolic function and the precise mechanisms (insulin resistance, β-cell dysfunction, or both) responsible for the increased T2D risk in people with OSA are unknown.

Design and methods

We used a two-stage hyperinsulinemic–euglycemic clamp procedure in conjunction with stable isotopically labeled glucose and palmitate tracer infusions and 18F-fluorodeoxyglucose injection and positron emission tomography to quantify multi-organ insulin action and oral and intravenous tolerance tests to evaluate glucose-stimulated insulin secretion in fifteen people with obesity and OSA and thirteen people with obesity without OSA.

Results

OSA was associated with marked insulin resistance of adipose tissue triglyceride lipolysis and glucose uptake into both skeletal muscles and adipose tissue, whereas there was no significant difference between the OSA and control groups in insulin action on endogenous glucose production, basal insulin secretion, and glucose-stimulated insulin secretion during both intravenous and oral glucose tolerance tests.

Conclusions

These data demonstrate that OSA is a key determinant of insulin sensitivity in people with obesity and underscore the importance of taking OSA status into account when evaluating metabolic function in people with obesity. These findings may also have important clinical implications because disease progression and the risk of diabetes-related complications vary by T2D subtype (i.e. severe insulin resistance vs insulin deficiency). People with OSA may benefit most from the targeted treatment of peripheral insulin resistance and early screening for complications associated with peripheral insulin resistance.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 81 81 81
Full Text Views 5 5 5
PDF Downloads 2 2 2
  • 1

    Smith GI, Mittendorfer B, Klein S. Metabolically healthy obesity: facts and fantasies. Journal of Clinical Investigation 2019 129 39783989. (https://doi.org/10.1172/JCI129186)

    • Search Google Scholar
    • Export Citation
  • 2

    Esser N, Utzschneider KM, Kahn SE. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 2020 63 20072021. (https://doi.org/10.1007/s00125-020-05245-x)

    • Search Google Scholar
    • Export Citation
  • 3

    Stefan N Metabolically healthy and unhealthy normal weight and obesity. Endocrinology and Metabolism 2020 35 487493. (https://doi.org/10.3803/EnM.2020.301)

    • Search Google Scholar
    • Export Citation
  • 4

    Gileles-Hillel A, Kheirandish-Gozal L, Gozal D. Biological plausibility linking sleep apnoea and metabolic dysfunction. Nature Reviews: Endocrinology 2016 12 290298. (https://doi.org/10.1038/nrendo.2016.22)

    • Search Google Scholar
    • Export Citation
  • 5

    Arble DM, Bass J, Behn CD, Butler MP, Challet E, Czeisler C, Depner CM, Elmquist J, Franken P & Grandner MA et al.Impact of sleep and circadian disruption on energy balance and diabetes: a summary of workshop discussions. Sleep 2015 38 18491860. (https://doi.org/10.5665/sleep.5226)

    • Search Google Scholar
    • Export Citation
  • 6

    Tasali E, Van Cauter E, Hoffman L, Ehrmann DA. Impact of obstructive sleep apnea on insulin resistance and glucose tolerance in women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2008 93 38783884. (https://doi.org/10.1210/jc.2008-0925)

    • Search Google Scholar
    • Export Citation
  • 7

    Temple KA, Leproult R, Morselli L, Ehrmann DA, Van Cauter E, Mokhlesi B. Sex differences in the impact of obstructive sleep apnea on glucose metabolism. Frontiers in Endocrinology 2018 9 376. (https://doi.org/10.3389/fendo.2018.00376)

    • Search Google Scholar
    • Export Citation
  • 8

    Kamble PG, Theorell-Haglow J, Wiklund U, Franklin KA, Hammar U, Lindberg E, Eriksson JW. Sleep apnea in men is associated with altered lipid metabolism, glucose tolerance, insulin sensitivity, and body fat percentage. Endocrine 2020 70 4857. (https://doi.org/10.1007/s12020-020-02369-3)

    • Search Google Scholar
    • Export Citation
  • 9

    Alatrach M, Agyin C, Mehta R, Adams J, DeFronzo RA, Abdul-Ghani M. Glucose-mediated glucose disposal at baseline insulin is impaired in IFG. Journal of Clinical Endocrinology and Metabolism 2019 104 163171. (https://doi.org/10.1210/jc.2017-01866)

    • Search Google Scholar
    • Export Citation
  • 10

    Dube S, Errazuriz-Cruzat I, Basu A, Basu R. The forgotten role of glucose effectiveness in the regulation of glucose tolerance. Current Diabetes Reports 2015 15 605. (https://doi.org/10.1007/s11892-015-0605-6)

    • Search Google Scholar
    • Export Citation
  • 11

    Rix I, Nexoe-Larsen C, Bergmann NC, Lund A, Knop FK. Glucagon physiology. In Endotext. Eds Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Grossman A, Hershman JM & Hofland J et al.South Dartmouth (MA), 2000.

    • Search Google Scholar
    • Export Citation
  • 12

    Ha J, Muniyappa R, Sherman AS, Quon MJ. When MINMOD artifactually interprets strong insulin secretion as weak insulin action. Frontiers in Physiology 2021 12 601894. (https://doi.org/10.3389/fphys.2021.601894)

    • Search Google Scholar
    • Export Citation
  • 13

    Trico D, Natali A, Arslanian S, Mari A, Ferrannini E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 2018 3 e124912. (https://doi.org/10.1172/jci.insight.124912)

    • Search Google Scholar
    • Export Citation
  • 14

    Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. American Journal of Physiology: Endocrinology and Metabolism 2008 294 E15E26. (https://doi.org/10.1152/ajpendo.00645.2007)

    • Search Google Scholar
    • Export Citation
  • 15

    Brooks B, Cistulli PA, Borkman M, Ross G, McGhee S, Grunstein RR, Sullivan CE, Yue DK. Obstructive sleep apnea in obese noninsulin-dependent diabetic patients: effect of continuous positive airway pressure treatment on insulin responsiveness. Journal of Clinical Endocrinology and Metabolism 1994 79 16811685. (https://doi.org/10.1210/jcem.79.6.7989475)

    • Search Google Scholar
    • Export Citation
  • 16

    Harsch IA, Schahin SP, Radespiel-Troger M, Weintz O, Jahreiss H, Fuchs FS, Wiest GH, Hahn EG, Lohmann T & Konturek PC et al.Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. American Journal of Respiratory and Critical Care Medicine 2004 169 156162. (https://doi.org/10.1164/rccm.200302-206OC)

    • Search Google Scholar
    • Export Citation
  • 17

    Kent BD, McNicholas WT, Ryan S. Insulin resistance, glucose intolerance and diabetes mellitus in obstructive sleep apnoea. Journal of Thoracic Disease 2015 7 13431357. (https://doi.org/10.3978/j.issn.2072-1439.2015.08.11)

    • Search Google Scholar
    • Export Citation
  • 18

    Schahin SP, Nechanitzky T, Dittel C, Fuchs FS, Hahn EG, Konturek PC, Ficker JH, Harsch IA. Long-term improvement of insulin sensitivity during CPAP therapy in the obstructive sleep apnoea syndrome. Medical Science Monitor 2008 14 CR117CR121.

    • Search Google Scholar
    • Export Citation
  • 19

    West SD, Nicoll DJ, Wallace TM, Matthews DR, Stradling JR. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 2007 62 969974. (https://doi.org/10.1136/thx.2006.074351)

    • Search Google Scholar
    • Export Citation
  • 20

    DeFronzo RA, Tripathy D, Abdul-Ghani M, Musi N, Gastaldelli A. The disposition index does not reflect beta-cell function in IGT subjects treated with pioglitazone. Journal of Clinical Endocrinology and Metabolism 2014 99 37743781. (https://doi.org/10.1210/jc.2014-1515)

    • Search Google Scholar
    • Export Citation
  • 21

    Kim SH, Reaven GM. Insulin clearance: an underappreciated modulator of plasma insulin concentration. Journal of Investigative Medicine 2016 64 11621165. (https://doi.org/10.1136/jim-2016-000149)

    • Search Google Scholar
    • Export Citation
  • 22

    Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature 2019 576 5160. (https://doi.org/10.1038/s41586-019-1797-8)

  • 23

    Conte C, Fabbrini E, Kars M, Mittendorfer B, Patterson BW, Klein S. Multiorgan insulin sensitivity in lean and obese subjects. Diabetes Care 2012 35 13161321. (https://doi.org/10.2337/dc11-1951)

    • Search Google Scholar
    • Export Citation
  • 24

    Mittendorfer B, Liem O, Patterson BW, Miles JM, Klein S. What does the measurement of whole-body fatty acid rate of appearance in plasma by using a fatty acid tracer really mean? Diabetes 2003 52 16411648. (https://doi.org/10.2337/diabetes.52.7.1641)

    • Search Google Scholar
    • Export Citation
  • 25

    Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. Journal of Cerebral Blood Flow and Metabolism 1985 5 584590. (https://doi.org/10.1038/jcbfm.1985.87)

    • Search Google Scholar
    • Export Citation
  • 26

    Kelley DE, Williams KV, Price JC, Goodpaster B. Determination of the lumped constant for [18F] fluorodeoxyglucose in human skeletal muscle. Journal of Nuclear Medicine 1999 40 17981804.

    • Search Google Scholar
    • Export Citation
  • 27

    Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. Journal of Nuclear Medicine 2013 54 523531. (https://doi.org/10.2967/jnumed.112.111336)

    • Search Google Scholar
    • Export Citation
  • 28

    Van Cauter E, Mestrez F, Sturis J, Polonsky KS. Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 1992 41 368377. (https://doi.org/10.2337/diab.41.3.368)

    • Search Google Scholar
    • Export Citation
  • 29

    Sparacino G, Pillonetto G, Capello M, De Nicolao G, Cobelli C. WINSTODEC: a stochastic deconvolution interactive program for physiological and pharmacokinetic systems. Computer Methods and Programs in Biomedicine 2002 67 6777. (https://doi.org/10.1016/s0169-2607(0000151-6)

    • Search Google Scholar
    • Export Citation
  • 30

    Polidori DC, Bergman RN, Chung ST, Sumner AE. Hepatic and extrahepatic insulin clearance are differentially regulated: results from a novel model-based analysis of intravenous glucose tolerance data. Diabetes 2016 65 15561564. (https://doi.org/10.2337/db15-1373)

    • Search Google Scholar
    • Export Citation
  • 31

    Magkos F, Fabbrini E, Korenblat K, Okunade AL, Patterson BW, Klein S. Reproducibility of glucose, fatty acid and VLDL kinetics and multi-organ insulin sensitivity in obese subjects with non-alcoholic fatty liver disease. International Journal of Obesity 2011 35 12331240. (https://doi.org/10.1038/ijo.2010.265)

    • Search Google Scholar
    • Export Citation
  • 32

    Zaharia OP, Strassburger K, Strom A, Bonhof GJ, Karusheva Y, Antoniou S, Bodis K, Markgraf DF, Burkart V & Mussig K et al.Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet: Diabetes and Endocrinology 2019 7 684694. (https://doi.org/10.1016/S2213-8587(1930187-1)

    • Search Google Scholar
    • Export Citation
  • 33

    Ahlqvist E, Storm P, Karajamaki A, Martinell M, Dorkhan M, Carlsson A, Vikman P, Prasad RB, Aly DM & Almgren P et al.Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet: Diabetes and Endocrinology 2018 6 361369. (https://doi.org/10.1016/S2213-8587(1830051-2)

    • Search Google Scholar
    • Export Citation
  • 34

    Weiszenstein M, Shimoda LA, Koc M, Seda O, Polak J. Inhibition of lipolysis ameliorates diabetic phenotype in a mouse model of obstructive sleep apnea. American Journal of Respiratory Cell and Molecular Biology 2016 55 299307. (https://doi.org/10.1165/rcmb.2015-0315OC)

    • Search Google Scholar
    • Export Citation
  • 35

    Stamatakis KA, Punjabi NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 2010 137 95101. (https://doi.org/10.1378/chest.09-0791)

    • Search Google Scholar
    • Export Citation
  • 36

    Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. PNAS 2008 105 10441049. (https://doi.org/10.1073/pnas.0706446105)

    • Search Google Scholar
    • Export Citation
  • 37

    Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. American Journal of Respiratory and Critical Care Medicine 2002 165 670676. (https://doi.org/10.1164/ajrccm.165.5.2103001)

    • Search Google Scholar
    • Export Citation
  • 38

    Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE & Sleep Heart Health Study Investigators. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. American Journal of Epidemiology 2004 160 521530. (https://doi.org/10.1093/aje/kwh261)

    • Search Google Scholar
    • Export Citation
  • 39

    Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. American Journal of Respiratory and Critical Care Medicine 2002 165 677682. (https://doi.org/10.1164/ajrccm.165.5.2104087)

    • Search Google Scholar
    • Export Citation
  • 40

    Mackenzie RW, Watt P. A molecular and whole body insight of the mechanisms surrounding glucose disposal and insulin resistance with hypoxic treatment in skeletal muscle. Journal of Diabetes Research 2016 2016 6934937. (https://doi.org/10.1155/2016/6934937)

    • Search Google Scholar
    • Export Citation
  • 41

    Louis M, Punjabi NM. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. Journal of Applied Physiology 2009 106 15381544. (https://doi.org/10.1152/japplphysiol.91523.2008)

    • Search Google Scholar
    • Export Citation
  • 42

    Lecoultre V, Peterson CM, Covington JD, Ebenezer PJ, Frost EA, Schwarz JM, Ravussin E. Ten nights of moderate hypoxia improves insulin sensitivity in obese humans. Diabetes Care 2013 36 e197e198. (https://doi.org/10.2337/dc13-1350)

    • Search Google Scholar
    • Export Citation
  • 43

    Holloszy JO Exercise-induced increase in muscle insulin sensitivity. Journal of Applied Physiology 2005 99 338343. (https://doi.org/10.1152/japplphysiol.00123.2005)

    • Search Google Scholar
    • Export Citation
  • 44

    Thorn CE, Knight B, Pastel E, McCulloch LJ, Patel B, Shore AC, Kos K. Adipose tissue is influenced by hypoxia of obstructive sleep apnea syndrome independent of obesity. Diabetes and Metabolism 2017 43 240247. (https://doi.org/10.1016/j.diabet.2016.12.002)

    • Search Google Scholar
    • Export Citation
  • 45

    Mokhlesi B, Tjaden AH, Temple KA, Edelstein SL, Sam S, Nadeau KJ, Hannon TS, Manchanda S, Mather KJ & Kahn SE et al.Obstructive sleep apnea, glucose tolerance, and beta-cell function in adults with prediabetes or untreated type 2 diabetes in the restoring insulin secretion (RISE) study. Diabetes Care 2021 44 9931001. (https://doi.org/10.2337/dc20-2127)

    • Search Google Scholar
    • Export Citation
  • 46

    Lee YS, Wollam J, Olefsky JM. An integrated view of Immunometabolism. Cell 2018 172 2240. (https://doi.org/10.1016/j.cell.2017.12.025)

  • 47

    Ctoi AF, Parvu AE, Andreicut AD, Mironiuc A, Crciun A, Ctoi C, Pop ID. Metabolically healthy versus unhealthy morbidly obese: chronic inflammation, nitro-oxidative stress, and insulin resistance. Nutrients 2018 10 1199. (https://doi.org/10.3390/nu10091199)

    • Search Google Scholar
    • Export Citation
  • 48

    Fuchs A, Samovski D, Smith GI, Cifarelli V, Farabi SS, Yoshino J, Pietka T, Chang SW, Ghosh S & Myckatyn TM et al.Associations among adipose tissue immunology, inflammation, exosomes and insulin sensitivity in people with obesity and nonalcoholic fatty liver disease. Gastroenterology 2021 161 968 .e12981.e12. (https://doi.org/10.1053/j.gastro.2021.05.008)

    • Search Google Scholar
    • Export Citation
  • 49

    Iglesias Molli AE, Penas Steinhardt A, Lopez AP, Gonzalez CD, Vilarino J, Frechtel GD, Cerrone GE. Metabolically healthy obese individuals present similar chronic inflammation level but less insulin-resistance than obese individuals with metabolic syndrome. PLoS ONE 2017 12 e0190528. (https://doi.org/10.1371/journal.pone.0190528)

    • Search Google Scholar
    • Export Citation
  • 50

    Rosmond R Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinology 2005 30 110. (https://doi.org/10.1016/j.psyneuen.2004.05.007)

    • Search Google Scholar
    • Export Citation
  • 51

    Batista TM, Haider N, Kahn CR. Defining the underlying defect in insulin action in type 2 diabetes. Diabetologia 2021 64 9941006. (https://doi.org/10.1007/s00125-021-05415-5)

    • Search Google Scholar
    • Export Citation