High prevalence of subnormal testosterone in obese adolescent males: reversal with bariatric surgery

in European Journal of Endocrinology
View More View Less
  • 1 Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, New York, USA
  • | 2 Division of Endocrinology, Diabetes and Metabolism, Saint Louis University, St. Louis, Missouri, USA
  • | 3 Division of Pediatric General & Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
  • | 4 University of Colorado, Denver and Children’s Hospital Colorado, Aurora, Colorado, USA
  • | 5 Division of Pediatric Surgery, John R. Oishei Children’s Hospital and Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, New York, USA
  • | 6 Quest Diagnostics, Nichols Institute, Valencia, California, USA
  • | 7 Endocrine Division, Quest Diagnostics Nichols Institute, San Juan Capistrano, California, USA
  • | 8 Gulf Medical University, Research Department, Ajman, UAE

Correspondence should be addressed to S Dhindsa; Email: sandeep.dhindsa@health.slu.edu
Restricted access

USD  $0.00
USD  $0.00

USD  $0.00
USD  $0.00

Objective

Obesity in adolescent males is associated with the lowering of total and free testosterone concentrations. Weight loss may increase testosterone concentrations.

Design and methods

We evaluated the changes in sex hormones following bariatric surgery in 34 males (age range: 14.6–19.8 years) with obesity. These participants were part of a prospective multicenter study, Teen-Longitudinal Assessment of Bariatric Surgery. The participants were followed up for 5 years after surgery. Total testosterone, total estradiol, luteinizing hormone, follicle-stimulating hormone, sex hormone-binding globulin, C-reactive protein, insulin and glucose were measured at baseline, 6 months and annually thereafter. Free testosterone, free estradiol and HOMA2-IR were calculated.

Results

Study participants lost one-third of their body weight after bariatric surgery, with maximum weight loss achieved at 24 months for most participants. Free testosterone increased from 0.17 (95% CI: 0.13 to 0.20) at baseline to 0.34 (95% CI: 0.30 to 0.38) and 0.27 nmol/L (95% CI: 0.23 to 0.32) at 2 and 5 years (P  < 0.001 for both), respectively. Total testosterone increased from 6.7 (95% CI: 4.7 to 8.8) at baseline to 17.6 (95% CI: 15.3 to 19.9) and 13.8 (95% CI: 11.0 to 16.5) nmol/L at 2 and 5 years (P  < 0.001), respectively. Prior to surgery, 73% of the participants had subnormal free testosterone (<0.23 nmol/L). After 2 and 5 years, only 20 and 33%, respectively, had subnormal free testosterone concentrations. Weight regain was related to a fall in free testosterone concentrations.

Conclusions

Bariatric surgery led to a robust increase in testosterone concentrations in adolescent males with severe obesity. Participants who regained weight had a decline in their testosterone concentrations.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 139 139 139
Full Text Views 7 7 7
PDF Downloads 14 14 14
  • 1

    Mogri M, Dhindsa S, Quattrin T, Ghanim H, Dandona P. Testosterone concentrations in young pubertal and post-pubertal obese males. Clinical Endocrinology 2013 78 593599. (https://doi.org/10.1111/cen.12018)

    • Search Google Scholar
    • Export Citation
  • 2

    Dhindsa S, Ghanim H, Batra M, Dandona P. Hypogonadotropic hypogonadism in men with diabesity. Diabetes Care 2018 41 15161525. (https://doi.org/10.2337/dc17-2510)

    • Search Google Scholar
    • Export Citation
  • 3

    Dhindsa S, Prabhakar S, Sethi M, Bandyopadhyay A, Chaudhuri A, Dandona P. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. Journal of Clinical Endocrinology and Metabolism 2004 89 54625468. (https://doi.org/10.1210/jc.2004-0804)

    • Search Google Scholar
    • Export Citation
  • 4

    Dhindsa S, Miller MG, McWhirter CL, Mager DE, Ghanim H, Chaudhuri A, Dandona P. Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes Care 2010 33 11861192. (https://doi.org/10.2337/dc09-1649)

    • Search Google Scholar
    • Export Citation
  • 5

    Escobar-Morreale HF, Santacruz E, Luque-Ramirez M, Botella Carretero JI. Prevalence of ‘obesity-associated gonadal dysfunction’ in severely obese men and women and its resolution after bariatric surgery: a systematic review and meta-analysis. Human Reproduction Update 2017 23 390408. (https://doi.org/10.1093/humupd/dmx012)

    • Search Google Scholar
    • Export Citation
  • 6

    Sarwer DB, Spitzer JC, Wadden TA, Rosen RC, Mitchell JE, Lancaster K, Courcoulas A, Gourash W, Christian NJ. Sexual functioning and sex hormones in men who underwent bariatric surgery. Surgery for Obesity and Related Diseases 2015 11 643651. (https://doi.org/10.1016/j.soard.2014.12.014)

    • Search Google Scholar
    • Export Citation
  • 7

    Inge TH, Courcoulas AP, Jenkins TM, Michalsky MP, Helmrath MA, Brandt ML, Harmon CM, Zeller MH, Chen MK & Xanthakos SA et al.Weight loss and health status 3 years after bariatric surgery in adolescents. New England Journal of Medicine 2016 374 113123. (https://doi.org/10.1056/NEJMoa1506699)

    • Search Google Scholar
    • Export Citation
  • 8

    Dhindsa S, Ghanim H, Batra M, Kuhadiya ND, Abuaysheh S, Sandhu S, Green K, Makdissi A, Hejna J & Chaudhuri A et al.Insulin resistance and inflammation in hypogonadotropic hypogonadism and their reduction after testosterone replacement in men with type 2 diabetes. Diabetes Care 2016 39 8291. (https://doi.org/10.2337/dc15-1518)

    • Search Google Scholar
    • Export Citation
  • 9

    Inge TH, Zeller M, Harmon C, Helmrath M, Bean J, Modi A, Horlick M, Kalra M, Xanthakos S & Miller R et al.Teen-longitudinal assessment of bariatric surgery: methodological features of the first prospective multicenter study of adolescent bariatric surgery. Journal of Pediatric Surgery 2007 42 19691971. (https://doi.org/10.1016/j.jpedsurg.2007.08.010)

    • Search Google Scholar
    • Export Citation
  • 10

    Salameh WA, Redor-Goldman MM, Clarke NJ, Reitz RE, Caulfield MP. Validation of a total testosterone assay using high-turbulence liquid chromatography tandem mass spectrometry: total and free testosterone reference ranges. Steroids 2010 75 169175. (https://doi.org/10.1016/j.steroids.2009.11.004)

    • Search Google Scholar
    • Export Citation
  • 11

    Dhindsa S, Zhang N, McPhaul MJ, Wu Z, Ghosal AK, Erlich EC, Mani K, Randolph GJ, Edwards JR, Mudd PA, Diwan A. Association of Circulating Sex Hormones With Inflammation and Disease Severity in Patients With COVID-19. JAMA Network Open 3 e2111398. (https://doi.org/10.1001/jamanetworkopen.2021.11398)

    • Search Google Scholar
    • Export Citation
  • 12

    Travison TG, Vesper HW, Orwoll E, Wu F, Kaufman JM, Wang Y, Lapauw B, Fiers T, Matsumoto AM, Bhasin S. Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. Journal of Clinical Endocrinology and Metabolism 2017 102 11611173. (https://doi.org/10.1210/jc.2016-2935)

    • Search Google Scholar
    • Export Citation
  • 13

    Sodergard R, Backstrom T, Shanbhag V, Carstensen H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. Journal of Steroid Biochemistry 1982 16 801810. (https://doi.org/10.1016/0022-4731(8290038-3)

    • Search Google Scholar
    • Export Citation
  • 14

    Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. Journal of Clinical Endocrinology and Metabolism 1999 84 36663672. (https://doi.org/10.1210/jcem.84.10.6079)

    • Search Google Scholar
    • Export Citation
  • 15

    Hofstra J, Loves S, van Wageningen B, Ruinemans-Koerts J, Jansen I, de Boer H. High prevalence of hypogonadotropic hypogonadism in men referred for obesity treatment. Netherlands Journal of Medicine 2008 66 103109.

    • Search Google Scholar
    • Export Citation
  • 16

    van den Beld AW, de Jong FH, Grobbee DE, Pols HA, Lamberts SW. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. Journal of Clinical Endocrinology and Metabolism 2000 85 32763282. (https://doi.org/10.1210/jcem.85.9.6825)

    • Search Google Scholar
    • Export Citation
  • 17

    Mancini M, Pecori Giraldi F, Andreassi A, Mantellassi G, Salvioni M, Berra CC, Manfrini R, Banderali G, Folli F. Obesity is strongly associated with low testosterone and reduced penis growth during development. Journal of Clinical Endocrinology and Metabolism 2021 106 31513159. (https://doi.org/10.1210/clinem/dgab535)

    • Search Google Scholar
    • Export Citation
  • 18

    Pham NH, Bena J, Bhatt DL, Kennedy L, Schauer PR, Kashyap SR. Increased free testosterone levels in men with uncontrolled type 2 diabetes five years after randomization to bariatric surgery. Obesity Surgery 2018 28 277280. (https://doi.org/10.1007/s11695-017-2881-5)

    • Search Google Scholar
    • Export Citation
  • 19

    Wood GJA, Tiseo BC, Paluello DV, de Martin H, Santo MA, Nahas W, Srougi M, Cocuzza M. Bariatric surgery impact on reproductive hormones, semen analysis, and sperm DNA fragmentation in men with severe obesity: prospective study. Obesity Surgery 2020 30 48404851. (https://doi.org/10.1007/s11695-020-04851-3)

    • Search Google Scholar
    • Export Citation
  • 20

    Samavat J, Cantini G, Lotti F, Di Franco A, Tamburrino L, Degl’Innocenti S, Maseroli E, Filimberti E, Facchiano E & Lucchese M et al.Massive weight loss obtained by bariatric surgery affects semen quality in morbid male obesity: a preliminary prospective double-armed study. Obesity Surgery 2018 28 6976. (https://doi.org/10.1007/s11695-017-2802-7)

    • Search Google Scholar
    • Export Citation
  • 21

    Tajar A, Forti G, O’Neill TW, Lee DM, Silman AJ, Finn JD, Bartfai G, Boonen S, Casanueva FF & Giwercman A et al.Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Ageing Study. Journal of Clinical Endocrinology and Metabolism 2010 95 18101818. (https://doi.org/10.1210/jc.2009-1796)

    • Search Google Scholar
    • Export Citation
  • 22

    Chin VL, Willliams KM, Donnelley T, Censani M, Conroy R, Lerner S, Oberfield SE, McMahon DJ, Zitsman J, Fennoy I. Long-term follow-up of gonadal dysfunction in morbidly obese adolescent boys after bariatric surgery. Journal of Pediatric Endocrinology and Metabolism 2018 31 11911197. (https://doi.org/10.1515/jpem-2018-0261)

    • Search Google Scholar
    • Export Citation
  • 23

    Pitteloud N, Dwyer AA, Decruz S, Lee H, Boepple PA, Crowley WF Jr, Hayes FJ. The relative role of gonadal sex steroids and gonadotropin-releasing hormone pulse frequency in the regulation of follicle-stimulating hormone secretion in men. Journal of Clinical Endocrinology and Metabolism 2008 93 26862692. (https://doi.org/10.1210/jc.2007-2548)

    • Search Google Scholar
    • Export Citation
  • 24

    Dhindsa S, Furlanetto R, Vora M, Ghanim H, Chaudhuri A, Dandona P. Low estradiol concentrations in men with subnormal testosterone concentrations and type 2 diabetes. Diabetes Care 2011 34 18541859. (https://doi.org/10.2337/dc11-0208)

    • Search Google Scholar
    • Export Citation
  • 25

    Watanobe H, Hayakawa Y. Hypothalamic interleukin-1 beta and tumor necrosis factor-alpha, but not interleukin-6, mediate the endotoxin-induced suppression of the reproductive axis in rats. Endocrinology 2003 144 48684875. (https://doi.org/10.1210/en.2003-0644)

    • Search Google Scholar
    • Export Citation
  • 26

    Bhatia V, Chaudhuri A, Tomar R, Dhindsa S, Ghanim H, Dandona P. Low testosterone and high C-reactive protein concentrations predict low hematocrit in type 2 diabetes. Diabetes Care 2006 29 22892294. (https://doi.org/10.2337/dc06-0637)

    • Search Google Scholar
    • Export Citation
  • 27

    Grossmann M, Thomas MC, Panagiotopoulos S, Sharpe K, Macisaac RJ, Clarke S, Zajac JD, Jerums G. Low testosterone levels are common and associated with insulin resistance in men with diabetes. Journal of Clinical Endocrinology and Metabolism 2008 93 18341840. (https://doi.org/10.1210/jc.2007-2177)

    • Search Google Scholar
    • Export Citation
  • 28

    Lee JM, Wasserman R, Kaciroti N, Gebremariam A, Steffes J, Dowshen S, Harris D, Serwint J, Abney D & Smitherman L et al.Timing of puberty in overweight versus obese boys. Pediatrics 2016 137 e20150164. (https://doi.org/10.1542/peds.2015-0164)

    • Search Google Scholar
    • Export Citation
  • 29

    Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, Snyder PJ, Swerdloff RS, Wu FC, Yialamas MA. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism 2018 103 17151744. (https://doi.org/10.1210/jc.2018-00229)

    • Search Google Scholar
    • Export Citation
  • 30

    Fiers T, Wu F, Moghetti P, Vanderschueren D, Lapauw B, Kaufman JM. Reassessing free-testosterone calculation by liquid chromatography-tandem mass spectrometry direct equilibrium dialysis. Journal of Clinical Endocrinology and Metabolism 2018 103 21672174. (https://doi.org/10.1210/jc.2017-02360)

    • Search Google Scholar
    • Export Citation
  • 31

    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, Navaneethan SD, Singh RP, Pothier CE & Nissen SE et al.Bariatric Surgery versus intensive medical therapy for diabetes – 5-year outcomes. New England Journal of Medicine 2017 376 641651. (https://doi.org/10.1056/NEJMoa1600869)

    • Search Google Scholar
    • Export Citation