Treatment of acromegaly has substantial effects on body composition: a long-term follow-up study

in European Journal of Endocrinology
View More View Less
  • 1 Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Le Kremlin-Bicêtre, France
  • | 2 Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
  • | 3 Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Biophysique et Médecine Nucléaire, Le Kremlin-Bicêtre, France

Correspondence should be addressed to P Chanson; Email: philippe.chanson@bct.aphp.fr
Restricted access

Background

Acromegaly is associated with changes in body composition. Long-term changes following acromegaly treatment and the impact of different treatments have been less investigated.

Methods

We performed a retrospective study in 201 patients with acromegaly. Body composition was assessed by dual-energy X-ray absorptiometry. To investigate the specific effects of treatment vs aging, changes in body composition were compared in one group of patients evaluated both at the time of active and controlled disease (active-to-controlled (A>C); n  = 31) and in another group of patients evaluated two times while the disease was controlled (controlled-to-controlled (C>C); n  = 32).

Results

In the whole cohort, insulin-like growth factor I (IGF-I) was correlated with fat (r = −0.369; P  < 0.001) and lean mass (r = 0.383; P  < 0.001). Patients from A>C and C>C groups were comparable for age, sex, BMI and follow-up duration (P = n.s.). Reduction in IGF-I levels was associated with an increase in fat mass and a decrease in lean mass in the A>C group, which was four and eight times more pronounced compared to the C>C group (fat mass: +39 ± 34% vs +10 ± 15%, P  < 0.001; lean mass: −8 ± 8% vs −0.2 ± 6%, P  < 0.001, respectively). Changes in fat mass were negatively associated with IGF-I (r = −0.450; P = 0.011) and independent of the individual therapy. The daily dose of pegvisomant correlated with fat mass (r = 0.421; P = 0.002) and insulin sensitivity index (r = −0.466; P  < 0.001).

Conclusions

Treatment of acromegaly strongly impacts body composition until biochemical disease remission, characterized by an increase in fat mass and a decrease in lean mass. These changes are closely associated with the normalization of IGF-I. Thereafter, body composition changes are similar to what is observed with aging.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 2923 2924 187
Full Text Views 137 137 18
PDF Downloads 171 171 21
  • 1

    Melmed S, Bronstein MD, Chanson P, Klibanski A, Casanueva FF, Wass JAH, Strasburger CJ, Luger A, Clemmons DR, Giustina A. A Consensus Statement on acromegaly therapeutic outcomes. Nature Reviews: Endocrinology 2018 14 552561. (https://doi.org/10.1038/s41574-018-0058-5)

    • Search Google Scholar
    • Export Citation
  • 2

    Møller N, Jørgensen JOL. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocrine Reviews 2009 30 152177. (https://doi.org/10.1210/er.2008-0027)

    • Search Google Scholar
    • Export Citation
  • 3

    Kopchick JJ, Berryman DE, Puri V, Lee KY, Jorgensen JOL. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nature Reviews: Endocrinology 2020 16 135146. (https://doi.org/10.1038/s41574-019-0280-9)

    • Search Google Scholar
    • Export Citation
  • 4

    Vila G, Jørgensen JOL, Luger A, Stalla GK. Insulin resistance in patients with acromegaly. Frontiers in Endocrinology 2019 10 509. (https://doi.org/10.3389/fendo.2019.00509)

    • Search Google Scholar
    • Export Citation
  • 5

    Freda PU, Shen W, Heymsfield SB, Reyes-Vidal CM, Geer EB, Bruce JN, Gallagher D. Lower visceral and subcutaneous but higher intermuscular adipose tissue depots in patients with growth hormone and insulin-like growth factor I excess due to acromegaly. Journal of Clinical Endocrinology and Metabolism 2008 93 23342343. (https://doi.org/10.1210/jc.2007-2780)

    • Search Google Scholar
    • Export Citation
  • 6

    Winhofer Y, Wolf P, Krššák M, Wolfsberger S, Tura A, Pacini G, Gessl A, Raber W, Kukurova IJ & Kautzky-Willer A et al.No evidence of ectopic lipid accumulation in the pathophysiology of the acromegalic cardiomyopathy. Journal of Clinical Endocrinology and Metabolism 2014 99 42994306. (https://doi.org/10.1210/jc.2014-2242)

    • Search Google Scholar
    • Export Citation
  • 7

    Fellinger P, Wolf P, Pfleger L, Krumpolec P, Krssak M, Klavins K, Wolfsberger S, Micko A, Carey P & Gürtl B et al.Increased ATP synthesis might counteract hepatic lipid accumulation in acromegaly. JCI Insight 2020 5 111. (https://doi.org/10.1172/jci.insight.134638)

    • Search Google Scholar
    • Export Citation
  • 8

    Bredella MA, Schorr M, Dichtel LE, Gerweck AV, Young BJ, Woodmansee WW, Swearingen B, Miller KK. Body composition and ectopic lipid changes with biochemical control of acromegaly. Journal of Clinical Endocrinology and Metabolism 2017 102 42184225. (https://doi.org/10.1210/jc.2017-01210)

    • Search Google Scholar
    • Export Citation
  • 9

    Olarescu NC, Heck A, Godang K, Ueland T, Bollerslev J. The metabolic risk in patients newly diagnosed with acromegaly is related to fat distribution and circulating Adipokines and improves after treatment. Neuroendocrinology 2016 103 197206. (https://doi.org/10.1159/000371818)

    • Search Google Scholar
    • Export Citation
  • 10

    Reyes-Vidal CM, Mojahed H, Shen W, Jin Z, Arias-Mendoza F, Fernandez JC, Gallagher D, Bruce JN, Post KD, Freda PU. Adipose tissue redistribution and ectopic lipid deposition in active acromegaly and effects of surgical treatment. Journal of Clinical Endocrinology and Metabolism 2015 100 29462955. (https://doi.org/10.1210/jc.2015-1917)

    • Search Google Scholar
    • Export Citation
  • 11

    Xie T, Ding H, Xia M, Zhang X, Sun W, Liu T, Gu Y, Sun C, Hu F. Dynamic changes in the distribution of facial and abdominal adipose tissue correlated with surgical treatment in acromegaly. Endocrine 2018 62 552559. (https://doi.org/10.1007/s12020-018-1742-x)

    • Search Google Scholar
    • Export Citation
  • 12

    Reyes-Vidal C, Fernandez JC, Bruce JN, Crisman C, Conwell IM, Kostadinov J, Geer EB, Post KD, Freda PU. Prospective study of surgical treatment of acromegaly: effects on ghrelin, weight, adiposity, and markers of CV risk. Journal of Clinical Endocrinology and Metabolism 2014 99 41244132. (https://doi.org/10.1210/jc.2014-2259)

    • Search Google Scholar
    • Export Citation
  • 13

    Madsen M, Krusenstjerna-Hafstrmø T, Mløler L, Christensen B, Vendelbo MH, Pedersen SB, Frystyk J, Jessen N, Hansen TK & Stdøkilde-Jrøgensen H et al.Fat content in liver and skeletal muscle changes in a reciprocal manner in patients with acromegaly during combination therapy with a somatostatin analog and a GH receptor antagonist: a randomized clinical trial. Journal of Clinical Endocrinology and Metabolism 2012 97 12271235. (https://doi.org/10.1210/jc.2011-2681)

    • Search Google Scholar
    • Export Citation
  • 14

    Plöckinger U, Reuter T. Pegvisomant increases intra-abdominal fat in patients with acromegaly: a pilot study. European Journal of Endocrinology 2008 158 467471. (https://doi.org/10.1530/EJE-07-0637)

    • Search Google Scholar
    • Export Citation
  • 15

    Kuker AP, Shen W, Jin Z, Singh S, Chen J, Bruce JN, Freda PU. Body composition changes with long-term pegvisomant therapy of acromegaly. Journal of the Endocrine Society 2021 5 bvab004. (https://doi.org/10.1210/jendso/bvab004)

    • Search Google Scholar
    • Export Citation
  • 16

    Kuhn E, Maione L, Bouchachi A, Rozière M, Salenave S, Brailly-Tabard S, Young J, Kamenicky P, Assayag P, Chanson P. Long-term effects of pegvisomant on comorbidities in patients with acromegaly: a retrospective single-center study. European Journal of Endocrinology 2015 173 693702. (https://doi.org/10.1530/EJE-15-0500)

    • Search Google Scholar
    • Export Citation
  • 17

    Paulmichl K, Hatunic M, Højlund K, Jotic A, Krebs M, Mitrakou A, Porcellati F, Tura A, Bergsten P & Forslund A et al.Modification and validation of the triglyceride-to-HDL cholesterol ratio as a surrogate of insulin sensitivity in white juveniles and adults without diabetes mellitus: the single point insulin sensitivity estimator (SPISE). Clinical Chemistry 2016 62 12111219. (https://doi.org/10.1373/clinchem.2016.257436)

    • Search Google Scholar
    • Export Citation
  • 18

    Reid TJ, Jin Z, Shen W, Reyes-Vidal CM, Fernandez JC, Bruce JN, Kostadinov J, Post KD, Freda PU. IGF-1 levels across the spectrum of normal to elevated in acromegaly: relationship to insulin sensitivity, markers of cardiovascular risk and body composition. Pituitary 2015 18 808819. (https://doi.org/10.1007/s11102-015-0657-2)

    • Search Google Scholar
    • Export Citation
  • 19

    Ho KKY, Gibney J, Johannsson G, Wolthers T. Regulating of growth hormone sensitivity by sex steroids: implications for therapy. Frontiers of Hormone Research 2006 35 115128. (https://doi.org/10.1159/000094314)

    • Search Google Scholar
    • Export Citation
  • 20

    Ofenheimer A, Breyer-Kohansal R, Hartl S, Burghuber OC, Krach F, Schrott A, Wouters EFM, Franssen FME, Breyer MK. Reference values of body composition parameters and visceral adipose tissue (VAT) by DXA in adults aged 18–81 years-results from the lead cohort. European Journal of Clinical Nutrition 2020 74 11811191. (https://doi.org/10.1038/s41430-020-0596-5)

    • Search Google Scholar
    • Export Citation
  • 21

    Fosbøl , Zerahn B. Contemporary methods of body composition measurement. Clinical Physiology and Functional Imaging 2015 35 8197. (https://doi.org/10.1111/cpf.12152)

    • Search Google Scholar
    • Export Citation
  • 22

    Kamenický P, Mazziotti G, Lombès M, Giustina A, Chanson P. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications. Endocrine Reviews 2014 35 234281. (https://doi.org/10.1210/er.2013-1071)

    • Search Google Scholar
    • Export Citation
  • 23

    Santini F, Marzullo P, Rotondi M, Ceccarini G, Pagano L, Ippolito S, Chiovato L, Biondi B. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. European Journal of Endocrinology 2014 171 R137R152. (https://doi.org/10.1530/EJE-14-0067)

    • Search Google Scholar
    • Export Citation
  • 24

    Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinology and Metabolism Clinics of North America 2014 43 75102. (https://doi.org/10.1016/j.ecl.2013.10.005)

    • Search Google Scholar
    • Export Citation
  • 25

    Van Der Lely AJ, Jönsson P, Wilton P, Åkerblad AC, Cara J, Ghigo E. Treatment with high doses of pegvisomant in 56 patients with acromegaly: experience from ACROSTUDY. European Journal of Endocrinology 2016 175 239245. (https://doi.org/10.1530/EJE-16-0008)

    • Search Google Scholar
    • Export Citation
  • 26

    Leung KC, Doyle N, Ballesteros M, Waters MJ, Ho KK. Insulin regulation of human hepatic growth hormone receptors: divergent effects on biosynthesis and surface translocation. Journal of Clinical Endocrinology and Metabolism 2000 85 47124720. (https://doi.org/10.1210/jcem.85.12.7017)

    • Search Google Scholar
    • Export Citation
  • 27

    Besser GM, Burman P, Daly AF. Predictors and rates of treatment-resistant tumor growth in acromegaly. European Journal of Endocrinology 2005 153 187193. (https://doi.org/10.1530/eje.1.01968)

    • Search Google Scholar
    • Export Citation
  • 28

    Coopmans EC, Korevaar TIM, Meyel van SWF, Daly AF, Chanson P, Brue T, Delemer B, Hána V, Colao A & Carvalho D et al.Multivariable prediction model for biochemical response to first-generation somatostatin receptor ligands in acromegaly. Journal of Clinical Endocrinology and Metabolism 2020 105 29642974. (https://doi.org/10.1210/clinem/dgaa387)

    • Search Google Scholar
    • Export Citation
  • 29

    Briet C, Ilie MD, Kuhn E, Maione L, Brailly-Tabard S, Salenave S, Cariou B, Chanson P. Changes in metabolic parameters and cardiovascular risk factors after therapeutic control of acromegaly vary with the treatment modality. Data from the Bicêtre cohort, and review of the literature. Endocrine 2019 63 348360. (https://doi.org/10.1007/s12020-018-1797-8)

    • Search Google Scholar
    • Export Citation
  • 30

    Giustina A, Barkan A, Beckers A, Biermasz N, Biller BMK, Boguszewski C, Bolanowski M, Bonert V, Bronstein MD & Casanueva FF et al.A consensus on the diagnosis and treatment of acromegaly comorbidities: an update. Journal of Clinical Endocrinology and Metabolism 2020 105 dgz096. (https://doi.org/10.1210/clinem/dgz096)

    • Search Google Scholar
    • Export Citation
  • 31

    Sibeoni J, Manolios E, Verneuil L, Chanson P, Revah-Levy A. Patients’ perspectives on acromegaly diagnostic delay: a qualitative study. European Journal of Endocrinology 2019 180 339352. (https://doi.org/10.1530/EJE-18-0925)

    • Search Google Scholar
    • Export Citation
  • 32

    Conaglen HM, Jong de D, Crawford V, Elston MS, Conaglen JV. Body image disturbance in acromegaly patients compared to nonfunctioning pituitary adenoma patients and controls. International Journal of Endocrinology 2015 2015 624872. (https://doi.org/10.1155/2015/624872)

    • Search Google Scholar
    • Export Citation
  • 33

    Freda PU, Shen W, Reyes-Vidal CM, Geer EB, Arias-Mendoza F, Gallagher D, Heymsfield SB. Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon X-ray absorptiometry. Journal of Clinical Endocrinology and Metabolism 2009 94 28802886. (https://doi.org/10.1210/jc.2009-0026)

    • Search Google Scholar
    • Export Citation