Effects of estradiol on fat in men undergoing androgen deprivation therapy: a randomized trial

in European Journal of Endocrinology
View More View Less
  • 1 Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Australia
  • | 2 Department of Endocrinology, Austin Health, Heidelberg, Australia
  • | 3 ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
  • | 4 Department of Andrology, Concord Hospital, Sydney, New South Wales, Australia

Correspondence should be addressed to N Russell Email nicholas.russell@austin.org.au
Restricted access

Objective

Indirect evidence suggests that the effects of testosterone on fat mass in men are dependent on aromatization to estradiol (E2). However, no controlled study has assessed the effects of E2 in the absence of testosterone.

Design

Six-month randomized, placebo-controlled trial with the hypothesis that men randomized to E2 would reduce their fat mass.

Methods

Seventy-eight participants receiving androgen deprivation therapy for prostate cancer were randomized to 0.9 mg of 0.1% E2 gel per day, or matched placebo. Dual x-ray absorptiometry body composition was measured at baseline, month 3, and month 6. The primary outcome was total fat mass.

Results

Serum E2 increased in the estradiol group over 6 months compared to placebo, and mean-adjusted difference (MAD) was 207 pmol/L (95% CI: 123–292), P  < 0.001. E2 treatment changed total fat mass, MAD 1007 g (95% CI: 124–1891), but not significantly, so P = 0.09. There were other consistent non-significant trends toward increased proportional fat mass, MAD 0.8% (95% CI: 0.0–1.6), P= 0.15; gynoid fat, MAD 147 g (95% CI: 2–293), P = 0.08; visceral fat, 53 g (95% CI: 1–105) P = 0.13; and subcutaneous fat, MAD 65 g (95% CI: 5–125), P = 0.11. Android fat increased, MAD 164 g (95% CI: 41–286), P = 0.04.

Conclusion

Contrary to our hypothesis, we provide suggestive evidence that E2 acting in the absence of testosterone, may increase total and regional fat mass in men. Given the premature closure of clinical trials due to the COVID pandemic, this potentially important observation should encourage additional studies to confirm or refute whether E2 promotes fat expansion in the absence of testosterone.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 732 732 499
Full Text Views 92 92 85
PDF Downloads 57 57 46
  • 1

    Wang CC, Swerdloff RSR, Iranmanesh AA, Dobs AA, Snyder PJP, Cunningham GG, Matsumoto AMA, Weber TT, Berman NN & Testosterone Gel Study Group. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. Journal of Clinical Endocrinology and Metabolism 2000 85 28392853. (https://doi.org/10.1210/jcem.85.8.6747)

    • Search Google Scholar
    • Export Citation
  • 2

    Wang C, Cunningham G, Dobs A, Iranmanesh A, Matsumoto AM, Snyder PJ, Weber T, Berman N, Hull L, Swerdloff RS. Long-term testosterone gel (AndroGel) treatment maintains beneficial effects on sexual function and mood, lean and fat mass, and bone mineral density in hypogonadal men. Journal of Clinical Endocrinology and Metabolism 2004 89 20852098. (https://doi.org/10.1210/jc.2003-032006)

    • Search Google Scholar
    • Export Citation
  • 3

    Finkelstein JS, Lee H, Burnett-Bowie SM, Darakananda K, Gentile EC, Goldstein DW, Prizand SH, Krivicich LM, Taylor AP & Wulczyn KE et al. Dose-response relationships between gonadal steroids and bone, body composition, and sexual function in aging men. Journal of Clinical Endocrinology and Metabolism 2020 105 27792788. (https://doi.org/10.1210/clinem/dgaa318)

    • Search Google Scholar
    • Export Citation
  • 4

    Page ST, Amory JK, Bowman FD, Anawalt BD, Matsumoto AM, Bremner WJ, Tenover JL. Exogenous testosterone (T) alone or with finasteride increases physical performance, grip strength, and lean body mass in older men with low serum T. Journal of Clinical Endocrinology and Metabolism 2005 90 15021510. (https://doi.org/10.1210/jc.2004-1933)

    • Search Google Scholar
    • Export Citation
  • 5

    Snyder PJ, Peachey H, Hannoush P, Berlin JA, Loh L, Lenrow DA, Holmes JH, Dlewati A, Santanna J & Rosen CJ et al.Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. Journal of Clinical Endocrinology and Metabolism 1999 84 26472653. (https://doi.org/10.1210/jcem.84.8.5885)

    • Search Google Scholar
    • Export Citation
  • 6

    Burnett‐Bowie SA, Roupenian KC, Dere ME, Lee H, Leder BZ. Effects of aromatase inhibition in hypogonadal older men: a randomized, double‐blind, placebo‐controlled trial. Clinical Endocrinology 2009 70 116123. (https://doi.org/10.1111/j.1365-2265.2008.03327.x)

    • Search Google Scholar
    • Export Citation
  • 7

    Russell N, Grossmann M. MECHANISMS IN ENDOCRINOLOGY: Estradiol as a male hormone. European Journal of Endocrinology 2019 181 R23R43. (https://doi.org/10.1530/EJE-18-1000)

    • Search Google Scholar
    • Export Citation
  • 8

    Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. New England Journal of Medicine 1994 331 10561061. (https://doi.org/10.1056/NEJM199410203311604)

    • Search Google Scholar
    • Export Citation
  • 9

    Jones MEE, Boon WC, McInnes K, Maffei L, Carani C, Simpson ER. Recognizing rare disorders: aromatase deficiency. Nature Clinical Practice: Endocrinology and Metabolism 2007 3 414421. (https://doi.org/10.1038/ncpendmet0477)

    • Search Google Scholar
    • Export Citation
  • 10

    Finkelstein JS, Lee H, Burnett-Bowie SAM, Pallais JC, Yu EW, Borges LF, Jones BF, Barry CV, Wulczyn KE & Thomas BJ et al. Gonadal steroids and body composition, strength, and sexual function in men. New England Journal of Medicine 2013 369 10111022. (https://doi.org/10.1056/NEJMoa1206168)

    • Search Google Scholar
    • Export Citation
  • 11

    Chao J, Rubinow KB, Kratz M, Amory JK, Matsumoto AM, Page ST. Short-term estrogen withdrawal increases adiposity in healthy men. Journal of Clinical Endocrinology and Metabolism 2016 101 37243731. (https://doi.org/10.1210/jc.2016-1482)

    • Search Google Scholar
    • Export Citation
  • 12

    Tchernof A, Calles-Escandon J, Sites CK, Poehlman ET. Menopause, central body fatness, and insulin resistance: effects of hormone-replacement therapy. Coronary Artery Disease 1998 9 503511. (https://doi.org/10.1097/00019501-199809080-00006)

    • Search Google Scholar
    • Export Citation
  • 13

    Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-α knockout mice. PNAS 2000 97 1272912734. (https://doi.org/10.1073/pnas.97.23.12729)

    • Search Google Scholar
    • Export Citation
  • 14

    Callewaert F, Venken K, Ophoff J, Gendt KD, Torcasio A, Lenthe GH, Oosterwyck HV, Boonen S, Bouillon R & Verhoeven G et al. Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor‐α. FASEB Journal 2009 23 232240.

    • Search Google Scholar
    • Export Citation
  • 15

    Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM & Yao S et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. PNAS 2000 97 1273512740. (https://doi.org/10.1073/pnas.97.23.12735)

    • Search Google Scholar
    • Export Citation
  • 16

    Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in male physiology. Physiological Reviews 2017 97 9951043. (https://doi.org/10.1152/physrev.00018.2016)

    • Search Google Scholar
    • Export Citation
  • 17

    Movérare‐Skrtic S, Venken K, Andersson N, Lindberg MK, Svensson J, Swanson C, Vanderschueren D, Oscarsson J, Gustafsson JA, Ohlsson C. Dihydrotestosterone treatment results in obesity and altered lipid metabolism in orchidectomized mice. Obesity 2006 14 662672. (https://doi.org/10.1038/oby.2006.75)

    • Search Google Scholar
    • Export Citation
  • 18

    Kim NR, David K, Corbeels K, Khalil R, Antonio L, Schollaert D, Deboel L, Ohlsson C, Gustafsson & Vangoitsenhoven R et al. Testosterone reduces body fat in male mice by stimulation of physical activity via extrahypothalamic ERα signaling. Endocrinology 2021 162 bqab045. (https://doi.org/10.1210/endocr/bqab045).

    • Search Google Scholar
    • Export Citation
  • 19

    Sebo ZL, Rodeheffer MS. Testosterone metabolites differentially regulate obesogenesis and fat distribution. Molecular Metabolism 2020 44 19.

    • Search Google Scholar
    • Export Citation
  • 20

    Grossmann M, Hamilton EJ, Gilfillan C, Bolton D, Joon DL, Zajac JD. Bone and metabolic health in patients with non-metastatic prostate cancer who are receiving androgen deprivation therapy. Medical Journal of Australia 2011 194 301306. (https://doi.org/10.5694/j.1326-5377.2011.tb02979.x)

    • Search Google Scholar
    • Export Citation
  • 21

    Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, Santis MD, Fossati N, Gross T, Henry AM & Joniau S et al.EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. European Urology 2017 71 618629. (https://doi.org/10.1016/j.eururo.2016.08.003)

    • Search Google Scholar
    • Export Citation
  • 22

    Cornford P, Bellmunt J, Bolla M, Briers E, Santis MD, Gross T, Henry AM, Joniau S, Lam TB & Mason MD et al.EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. European Urology 2017 71 630642. (https://doi.org/10.1016/j.eururo.2016.08.002)

    • Search Google Scholar
    • Export Citation
  • 23

    Haseen F, Murray LJ, Cardwell CR, O’Sullivan JM, Cantwell MM. The effect of androgen deprivation therapy on body composition in men with prostate cancer: systematic review and meta-analysis. Journal of Cancer Survivorship: Research and Practice 2010 4 128139. (https://doi.org/10.1007/s11764-009-0114-1)

    • Search Google Scholar
    • Export Citation
  • 24

    Russell N, Hoermann R, Cheung AS, Zajac JD, Handelsman DJ, Grossmann M. Supplementary Table_CONSORT checklist_Estradiol and fat mass.docx. Figshare, 2021. (https://doi.org/10.6084/m9.figshare.14700837.v1).

    • Search Google Scholar
    • Export Citation
  • 25

    Russell N, Hoermann R, Cheung AS, Ching M, Zajac JD, Handelsman DJ, Grossmann M. Short-term effects of transdermal estradiol in men undergoing androgen deprivation therapy for prostate cancer: a randomized placebo-controlled trial. European Journal of Endocrinology 2018 178 565576. (https://doi.org/10.1530/EJE-17-1072)

    • Search Google Scholar
    • Export Citation
  • 26

    NIH National Cancer Institute. Common terminology criteria for adverse events version 4.03, 2010. (available at: https://nciterms.nci.nih.gov/ncitbrowser/pages/advanced_search.jsf?dictionary=CTCAE&version=4.03). Accessed on 4 July 2017.

    • Search Google Scholar
    • Export Citation
  • 27

    Micklesfield LK, Goedecke JH, Punyanitya M, Wilson KE, Kelly TL. Dual‐energy X‐ray performs as well as clinical computed tomography for the measurement of visceral fat. Obesity 2012 20 11091114. (https://doi.org/10.1038/oby.2011.367)

    • Search Google Scholar
    • Export Citation
  • 28

    Stults-Kolehmainen MA, Stanforth PR, Bartholomew JB, Lu T, Abolt CJ, Sinha R. DXA estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men. Nutrition and Diabetes 2013 3 e64e64. (https://doi.org/10.1038/nutd.2013.5)

    • Search Google Scholar
    • Export Citation
  • 29

    Dias KA, Ramos JS, Wallen MP, Davies PSW, Cain PA, Leong GM, Ingul CB, Coombes JS, Keating SE. Accuracy of longitudinal assessment of visceral adipose tissue by dual-energy X-ray absorptiometry in children with obesity. Journal of Obesity 2019 2019 2193723. (https://doi.org/10.1155/2019/2193723)

    • Search Google Scholar
    • Export Citation
  • 30

    Cheung YM, Roff G, Grossmann M. Precision of the hologic horizon A dual energy X-ray absorptiometry in the assessment of body composition. Obesity Research and Clinical Practice 2020 14 514518. (https://doi.org/10.1016/j.orcp.2020.10.005)

    • Search Google Scholar
    • Export Citation
  • 31

    World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008. Geneva: World Health Organization, 2011.

    • Search Google Scholar
    • Export Citation
  • 32

    Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, Sayer AA. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age and Ageing 2011 40 423429. (https://doi.org/10.1093/ageing/afr051)

    • Search Google Scholar
    • Export Citation
  • 33

    Harwood DT, Handelsman DJ. Development and validation of a sensitive liquid chromatography–tandem mass spectrometry assay to simultaneously measure androgens and estrogens in serum without derivatization. Clinica Chimica Acta: International Journal of Clinical Chemistry 2009 409 7884. (https://doi.org/10.1016/j.cca.2009.09.003)

    • Search Google Scholar
    • Export Citation
  • 34

    Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004 27 14871495. (https://doi.org/10.2337/diacare.27.6.1487)

  • 35

    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 2015 67 148.

  • 36

    Bürkner PC Advanced Bayesian multilevel modeling with the R package brms. R Journal 2018 10 395411. (https://doi.org/10.32614/RJ-2018-017)

    • Search Google Scholar
    • Export Citation
  • 37

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2021. (available at: https://www.R-project.org/)

    • Search Google Scholar
    • Export Citation
  • 38

    Fox J, Weisberg S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. Journal of Statistical Software 2018 87 127. (https://doi.org/10.18637/jss.v087.i09)

    • Search Google Scholar
    • Export Citation
  • 39

    Purnell JQ, Bland LB, Garzotto M, Lemmon D, Wersinger EM, Ryan CW, Brunzell JD, Beer TM. Effects of transdermal estrogen on levels of lipids, lipase activity, and inflammatory markers in men with prostate cancer. Journal of Lipid Research 2006 47 349355. (https://doi.org/10.1194/jlr.M500276-JLR200)

    • Search Google Scholar
    • Export Citation
  • 40

    Juang PS, Peng S, Allehmazedeh K, Shah A, Coviello AD, Herbst KL. Testosterone with dutasteride, but not anastrazole, improves insulin sensitivity in young obese men: a randomized controlled trial. Journal of Sexual Medicine 2014 11 563573. (https://doi.org/10.1111/jsm.12368)

    • Search Google Scholar
    • Export Citation
  • 41

    Handelsman DJ, Yeap B, Flicker L, Martin S, Wittert GA, Ly LP. Age-specific population centiles for androgen status in men. European Journal of Endocrinology 2015 173 809817. (https://doi.org/10.1530/EJE-15-0380)

    • Search Google Scholar
    • Export Citation
  • 42

    Frederiksen H, Johannsen TH, Andersen SE, Albrethsen J, Landersoe SK, Petersen JH, Andersen AN, Vestergaard ET, Schorring ME & Linneberg A et al. Sex-specific estrogen levels and reference intervals from infancy to late adulthood determined by LC-MS/MS. Journal of Clinical Endocrinology and Metabolism 2020 105 754768. (https://doi.org/10.1210/clinem/dgz196)

    • Search Google Scholar
    • Export Citation
  • 43

    Hembree WC, Cohen-Kettenis PT, Gooren L, Hannema SE, Meyer WJ, Murad MH, Rosenthal SM, Safer JD, Tangpricha V, T’Sjoen GG. Endocrine treatment of gender-dysphoric/gender-incongruent persons: an Endocrine Society* clinical practice guideline. Journal of Clinical Endocrinology and Metabolism 2017 102 38693903. (https://doi.org/10.1210/jc.2017-01658)

    • Search Google Scholar
    • Export Citation
  • 44

    Russell N, Cheung A, Grossmann M. Estradiol for the mitigation of adverse effects of androgen deprivation therapy. Endocrine-Related Cancer 2017 24 R297R313. (https://doi.org/10.1530/ERC-17-0153)

    • Search Google Scholar
    • Export Citation
  • 45

    Klaver M, Dekker MJHJ, Mutsert de R, Twisk JWR, Heijer den M. Cross‐sex hormone therapy in transgender persons affects total body weight, body fat and lean body mass: a meta‐analysis. Andrologia 2017 49 e12660. (https://doi.org/10.1111/and.12660)

    • Search Google Scholar
    • Export Citation
  • 46

    Klaver M, Blok de CJM, Wiepjes CM, Nota NM, Dekker MJHJ, Mutsert de R, Schreiner T, Fisher AD, T’Sjoen G, Heijer den M. Changes in regional body fat, lean body mass and body shape in trans persons using cross-sex hormonal therapy: results from a multicenter prospective study. European Journal of Endocrinology 2018 178 163171. (https://doi.org/10.1530/EJE-17-0496)

    • Search Google Scholar
    • Export Citation
  • 47

    Velzen van DM, Nota NM, Simsek S, Conemans EB, T’Sjoen G, Heijer den M. Variation in sensitivity and rate of change in body composition: steps toward individualizing transgender care. European Journal of Endocrinology 2020 183 529536. (https://doi.org/10.1530/EJE-20-0609)

    • Search Google Scholar
    • Export Citation
  • 48

    Spanos C, Bretherton I, Zajac JD, Cheung AS. Effects of gender-affirming hormone therapy on insulin resistance and body composition in transgender individuals: a systematic review. World Journal of Diabetes 2020 11 6677. (https://doi.org/10.4239/wjd.v11.i3.66)

    • Search Google Scholar
    • Export Citation
  • 49

    Basaria S, Bhasin S. Targeting the skeletal muscle-metabolism axis in prostate-cancer therapy. New England Journal of Medicine 2012 367 965967. (https://doi.org/10.1056/NEJMcibr1203160)

    • Search Google Scholar
    • Export Citation
  • 50

    Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 2003 144 50815088. (https://doi.org/10.1210/en.2003-0741)

    • Search Google Scholar
    • Export Citation
  • 51

    Singh R, Artaza JN, Taylor WE, Braga M, Yuan X, Gonzalez-Cadavid NF, Bhasin S. Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with β-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology 2006 147 141154. (https://doi.org/10.1210/en.2004-1649)

    • Search Google Scholar
    • Export Citation
  • 52

    Colleluori G, Chen R, Turin CG, Vigevano F, Qualls C, Johnson B, Mediwala S, Villareal DT, Armamento-Villareal R. Aromatase inhibitors plus weight loss improves the hormonal profile of obese hypogonadal men Without causing major side effects. Frontiers in Endocrinology 2020 11 277. (https://doi.org/10.3389/fendo.2020.00277)

    • Search Google Scholar
    • Export Citation
  • 53

    Birzniece V, Ho KKY. Sex steroids and the GH axis: implications for the management of hypopituitarism. Best Practice and Research: Clinical Endocrinology and Metabolism 2017 31 5969. (https://doi.org/10.1016/j.beem.2017.03.003)

    • Search Google Scholar
    • Export Citation
  • 54

    Roelfsema F, Yang RJ, Takahashi PY, Erickson D, Bowers CY, Veldhuis JD. Aromatized estrogens amplify nocturnal growth hormone secretion in testosterone-replaced older hypogonadal men. Journal of Clinical Endocrinology and Metabolism 2018 103 44194427. (https://doi.org/10.1210/jc.2018-00755)

    • Search Google Scholar
    • Export Citation
  • 55

    Keenan BS, Richards GE, Ponder SW, Dallas JS, Nagamani M, Smith ER. Androgen-stimulated pubertal growth: the effects of testosterone and dihydrotestosterone on growth hormone and insulin-like growth factor-I in the treatment of short stature and delayed puberty. Journal of Clinical Endocrinology and Metabolism 1993 76 9961001. (https://doi.org/10.1210/jcem.76.4.8473416)

    • Search Google Scholar
    • Export Citation
  • 56

    Rochira V, Zirilli L, Maffei L, Premrou V, Aranda C, Baldi M, Ghigo E, Aimaretti G, Carani C, Lanfranco F. Tall stature without growth hormone: four male patients with aromatase deficiency. Journal of Clinical Endocrinology and Metabolism 2010 95 16261633. (https://doi.org/10.1210/jc.2009-1743)

    • Search Google Scholar
    • Export Citation
  • 57

    Leung KC, Doyle N, Ballesteros M, Sjogren K, Watts CKW, Low TH, Leong GM, Ross RJM, Ho KKY. Estrogen inhibits GH signaling by suppressing GH-induced JAK2 phosphorylation, an effect mediated by SOCS-2. PNAS 2003 100 10161021. (https://doi.org/10.1073/pnas.0337600100)

    • Search Google Scholar
    • Export Citation
  • 58

    Birzniece V Hepatic actions of androgens in the regulation of metabolism. Current Opinion in Endocrinology, Diabetes, and Obesity 2018 25 201208. (https://doi.org/10.1097/MED.0000000000000405)

    • Search Google Scholar
    • Export Citation
  • 59

    Langley RE, Cafferty FH, Alhasso AA, Rosen SD, Sundaram SK, Freeman SC, Pollock P, Jinks RC, Godsland IF & Kockelbergh R et al. Cardiovascular outcomes in patients with locally advanced and metastatic prostate cancer treated with luteinising-hormone-releasing-hormone agonists or transdermal oestrogen: the randomised, phase 2 MRC PATCH trial. Lancet: Oncology 2013 14 306316. (https://doi.org/10.1016/S1470-2045(1370025-1)

    • Search Google Scholar
    • Export Citation