Effect of hyponatremia normalization on osteoblast function in patients with SIAD

in European Journal of Endocrinology
View More View Less
  • 1 Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
  • | 2 Department of Clinical Research, University of Basel, Basel, Switzerland

Correspondence should be addressed to L Potasso; Email: laura.potasso@usb.ch

*(L Potasso and J Refardt contributed equally to this work)

Restricted access

Objective

Hyponatremia is associated with an increased risk of bone fragility and fractures. Many studies suggest that hyponatremia stimulates osteoclast activation, whereas other studies rather reveal a possible role of acute hyponatremia in impairing osteoblast function. We aimed to assess whether and how correction of hyponatremia in hospitalized patients with the syndrome of inappropriate antidiuresis (SIAD) has an impact on bone metabolism.

Design and Methods

This was a predefined secondary analysis of 88 hospitalized patients with SIAD undergoing a randomized treatment with SGLT-2 inhibitors or placebo for 4 days. Biochemical markers of bone resorption (CTX) and bone formation (PINP) were collected in serum at baseline and after the intervention (day 5). Bone formation index (defined as PINP/CTX) and its difference between day 5 and baseline were calculated. Patients with steroid therapy (n = 6), fractures (n = 10), or whose data were missing (n = 4) were excluded from the analysis.

Results

Out of 68 patients, 27 (39.7%) were normonatremic at day 5. These patients showed an increase in serum PINP (P = 0.04), whereas persistent hyponatremic patients did not (P = 0.38), with a relevant difference between these two subgroups (P = 0.005). Serum CTX increased similarly in the two groups (P = 0.43). This produced a 47.9 points higher PINP/CTX difference between discharge and admission in normonatremic patients (95% CI: 17.0–78.7, P = 0.003) compared to patients with persistent hyponatremia, independent of age, sex, BMI, smoking habits, randomization arm, and baseline cortisol levels.

Conclusions

Our predefined post hoc analysis shows that correction of hyponatremia in hospitalized patients with SIAD might have a positive impact on osteoblast function.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 765 765 536
Full Text Views 100 100 86
PDF Downloads 52 52 35
  • 1

    Mohan S, Gu S, Parikh A, Radhakrishnan J. Prevalence of hyponatremia and association with mortality: results from NHANES. American Journal of Medicine 2013 126 1127 .e1113 7 .e1. (https://doi.org/10.1016/j.amjmed.2013.07.021)

    • Search Google Scholar
    • Export Citation
  • 2

    Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. American Journal of Medicine 2006 119 (Supplement 1) S30S35. (https://doi.org/10.1016/j.amjmed.2006.05.005)

    • Search Google Scholar
    • Export Citation
  • 3

    Kinsella S, Moran S, Sullivan MO, Molloy MGM, Eustace JA. Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clinical Journal of the American Society of Nephrology 2010 5 275280. (https://doi.org/10.2215/CJN.06120809)

    • Search Google Scholar
    • Export Citation
  • 4

    Hoorn EJ, Rivadeneira F, Van Meurs BJ, Ziere G, Stricker BH, Hofman A, Pols HA, Zietse R, Uitterlinden AG, Zillikens MC. Mild hyponatremia as a risk factor for fractures: the Rotterdam Study. Journal of Bone and Mineral Research 2011 26 18221828. (https://doi.org/10.1002/jbmr.380)

    • Search Google Scholar
    • Export Citation
  • 5

    Negri AL, Ayus JC. Hyponatremia and bone disease. Reviews in Endocrine and Metabolic Disorders 2017 18 6778. (https://doi.org/10.1007/s11154-016-9387-7)

    • Search Google Scholar
    • Export Citation
  • 6

    Corona G, Norello D, Parenti G, Sforza A, Maggi M, Peri A. Hyponatremia, falls and bone fractures: a systematic review and meta-analysis. Clinical Endocrinology 2018 89 505513. (https://doi.org/10.1111/cen.13790)

    • Search Google Scholar
    • Export Citation
  • 7

    Murthy K, Ondrey GJ, Malkani N, Raman G, Hodge MB, Marcantonio AJ, Verbalis JG. The effects of hyponatremia on bone density and fractures: a systematic review and meta-analysis. Endocrine Practice 2019 25 366378. (https://doi.org/10.4158/EP-2018-0499)

    • Search Google Scholar
    • Export Citation
  • 8

    Usala RL, Fernandez SJ, Mete M, Cowen L, Shara NM, Barsony J, Verbalis JG. Hyponatremia is associated with increased osteoporosis and bone fractures in a large US health system population. Journal of Clinical Endocrinology and Metabolism 2015 100 30213031. (https://doi.org/10.1210/jc.2015-1261)

    • Search Google Scholar
    • Export Citation
  • 9

    Verbalis JG, Barsony J, Sugimura Y, Tian Y, Adams DJ, Carter EA, Resnick HE. Hyponatremia-induced osteoporosis. Journal of Bone and Mineral Research 2010 25 554563. (https://doi.org/10.1359/jbmr.090827)

    • Search Google Scholar
    • Export Citation
  • 10

    Sejling AS, Thorsteinsson AL, Pedersen-Bjergaard U, Eiken P. Recovery from SIADH-associated osteoporosis: a case report. Journal of Clinical Endocrinology and Metabolism 2014 99 35273530. (https://doi.org/10.1210/jc.2014-1572)

    • Search Google Scholar
    • Export Citation
  • 11

    Barsony J, Manigrasso MB, Xu Q, Tam H, Verbalis JG. Chronic hyponatremia exacerbates multiple manifestations of senescence in male rats. Age 2013 35 271288. (https://doi.org/10.1007/s11357-011-9347-9)

    • Search Google Scholar
    • Export Citation
  • 12

    Barsony J, Sugimura Y, Verbalis JG. Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. Journal of Biological Chemistry 2011 286 1086410875. (https://doi.org/10.1074/jbc.M110.155002)

    • Search Google Scholar
    • Export Citation
  • 13

    Fibbi B, Benvenuti S, Giuliani C, Deledda C, Luciani P, Monici M, Mazzanti B, Ballerini C, Peri A. Low extracellular sodium promotes adipogenic commitment of human mesenchymal stromal cells: a novel mechanism for chronic hyponatremia-induced bone loss. Endocrine 2016 52 7385. (https://doi.org/10.1007/s12020-015-0663-1)

    • Search Google Scholar
    • Export Citation
  • 14

    Garrahy A, Galloway I, Hannon AM, Dineen R, Javadpour M, Tormey WP, Gan KJ, Twomey PJ, Mc Kenna MJ & Kilbane M et al.The effects of acute hyponatraemia on bone turnover in patients with subarachnoid haemorrhage: a preliminary report. Clinical Endocrinology 2021 94 616624. (https://doi.org/10.1111/cen.14367)

    • Search Google Scholar
    • Export Citation
  • 15

    Verbalis JG, Ellison H, Hobart M, Krasa H, Ouyang J, Czerwiec FS & Investigation of the Neurocognitive Impact of Sodium Improvement in Geriatric Hyponatremia: Efficacy and Safety of Tolvaptan (INSIGHT) Investigators. Tolvaptan and neurocognitive function in mild to moderate chronic hyponatremia: a randomized trial (insight). American Journal of Kidney Diseases 2016 67 893901. (https://doi.org/10.1053/j.ajkd.2015.12.024)

    • Search Google Scholar
    • Export Citation
  • 16

    Refardt J, Imber C, Sailer CO, Jeanloz N, Potasso L, Kutz A, Widmer A, Urwyler SA, Ebrahimi F & Vogt DR et al.A randomized trial of empagliflozin to increase plasma sodium levels in patients with the syndrome of inappropriate antidiuresis. Journal of the American Society of Nephrology 2020 31 615624. (https://doi.org/10.1681/ASN.2019090944)

    • Search Google Scholar
    • Export Citation
  • 17

    Refardt J, Winzeler B, Christ-Crain M. Copeptin and its role in the diagnosis of diabetes insipidus and the syndrome of inappropriate antidiuresis. Clinical Endocrinology 2019 91 2232. (https://doi.org/10.1111/cen.13991)

    • Search Google Scholar
    • Export Citation
  • 18

    Fenske W, Refardt J, Chifu I, Schnyder I, Winzeler B, Drummond J, Ribeiro-Oliveira A Jr, Drescher T, Bilz S & Vogt DR et al.A copeptin-based approach in the diagnosis of diabetes insipidus. New England Journal of Medicine 2018 379 428439. (https://doi.org/10.1056/NEJMoa1803760)

    • Search Google Scholar
    • Export Citation
  • 19

    Vandekerckhove J, Matzke D, Wagenmakers E-J. Model Comparison and the Principle of Parsimony, In The Oxford handbook ofcomputational and mathematical psychology. Eds J Wang, T Townsed & A Eidels 2014 300320.

    • Search Google Scholar
    • Export Citation
  • 20

    Franke GR Multicollinearity. In Wiley International Encyclopedia of Marketing. John Wiley & Sons, Ltd 2010. (https://doi.org/10.1002/9781444316568.wiem02066)

    • Search Google Scholar
    • Export Citation
  • 21

    R Core Development Team. R: A Language and Environment for Statistical Computing, 3.2.1, 2015. Doc free available internet http//www.r-project.org. (https://doi.org/10.1017/CBO9781107415324.004)

    • Search Google Scholar
    • Export Citation
  • 22

    Tamma R, Sun L, Cuscito C, Lu P, Corcelli M, Li J, Colaianni G, Moonga SS, Di Benedetto A & Grano M et al.Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. PNAS 2013 110 1864418649. (https://doi.org/10.1073/pnas.1318257110)

    • Search Google Scholar
    • Export Citation
  • 23

    Kirk B, Feehan J, Lombardi G, Duque G. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Current Osteoporosis Reports 2020 18 388400. (https://doi.org/10.1007/s11914-020-00599-y)

    • Search Google Scholar
    • Export Citation
  • 24

    Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nature Clinical Practice: Rheumatology 2006 2 3543. (https://doi.org/10.1038/ncprheum0070)

    • Search Google Scholar
    • Export Citation
  • 25

    Lumachi F, Ermani M, Camozzi V, Tombolan V, Luisetto G. Changes of bone formation markers osteocalcin and bone-specific alkaline phosphatase in postmenopausal women with osteoporosis. Annals of the New York Academy of Sciences 2009 1173 (Supplement 1) E60E63. (https://doi.org/10.1111/j.1749-6632.2009.04953.x)

    • Search Google Scholar
    • Export Citation
  • 26

    Resch H, Pietschmann P, Kudlacek S, Woloszczuk W, Krexner E, Bernecker P, Willvonseder R. Influence of sex and age on biochemical bone metabolism parameters. Mineral and Electrolyte Metabolism 1994 20 117121.

    • Search Google Scholar
    • Export Citation
  • 27

    Jorde R, Stunes AK, Kubiak J, Grimnes G, Thorsby PM, Syversen U. Smoking and other determinants of bone turnover. PLoS ONE 2019 14 e0225539. (https://doi.org/10.1371/journal.pone.0225539)

    • Search Google Scholar
    • Export Citation
  • 28

    Savvidis C, Tournis S, Dede AD. Obesity and bone metabolism. Hormones 2018 17 205217. (https://doi.org/10.1007/s42000-018-0018-4)

  • 29

    Ye Y, Zhao C, Liang J, Yang Y, Yu M, Qu X. Effect of sodium-glucose co-transporter 2 inhibitors on bone metabolism and fracture risk. Frontiers in Pharmacology 2018 9 1517. (https://doi.org/10.3389/fphar.2018.01517)

    • Search Google Scholar
    • Export Citation
  • 30

    Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes and Endocrinology 2015 3 810. (https://doi.org/10.1016/S2213-8587(14)70227-X)

    • Search Google Scholar
    • Export Citation
  • 31

    Cianciolo G, Pascalis De A, Capelli I, Gasperoni L, Di Lullo L, Bellasi A, La Manna G. Mineral and electrolyte disorders with SGLT2i therapy. JBMR Plus 2019 3 e10242. (https://doi.org/10.1002/JBM4.10242)

    • Search Google Scholar
    • Export Citation
  • 32

    Tang HL, Li DD, Zhang JJ, Hsu YH, Wang TS, Zhai SD, Song YQ. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes, Obesity and Metabolism 2016 18 11991206. (https://doi.org/10.1111/dom.12742)

    • Search Google Scholar
    • Export Citation
  • 33

    Cheng L, Li YY, Hu W, Bai F, Hao HR, Yu WN, Mao XM. Risk of bone fracture associated with sodium–glucose cotransporter-2 inhibitor treatment: a meta-analysis of randomized controlled trials. Diabetes and Metabolism 2019 45 436445. (https://doi.org/10.1016/j.diabet.2019.01.010)

    • Search Google Scholar
    • Export Citation
  • 34

    Tanaka H, Takano K, Iijima H, Kubo H, Maruyama N, Hashimoto T, Arakawa K, Togo M, Inagaki N, Kaku K. Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Advances in Therapy 2017 34 436451. (https://doi.org/10.1007/s12325-016-0457-8)

    • Search Google Scholar
    • Export Citation
  • 35

    Bolland MJ, Ames RW, Horne AM, Orr-Walker BJ, Gamble GD, Reid IR. The effect of treatment with a thiazide diuretic for 4 years on bone density in normal postmenopausal women. Osteoporosis International 2007 18 479486. (https://doi.org/10.1007/s00198-006-0259-y)

    • Search Google Scholar
    • Export Citation
  • 36

    Kruse C, Eiken P, Vestergaard P. Continuous and long-term treatment is more important than dosage for the protective effect of thiazide use on bone metabolism and fracture risk. Journal of Internal Medicine 2016 279 110122. (https://doi.org/10.1111/joim.12397)

    • Search Google Scholar
    • Export Citation
  • 37

    Rejnmark L, Vestergaard P, Heickendorff L, Andreasen F, Mosekilde L. Loop diuretics alter the diurnal rhythm of endogenous parathyroid hormone secretion. A randomized-controlled study on the effects of loop-and thiazide-diuretics on the diurnal rhythms of calcitropic hormones and biochemical bone markers in postmenopausal women. European Journal of Clinical Investigation 2001 31 764772. (https://doi.org/10.1046/j.1365-2362.2001.00883.x)

    • Search Google Scholar
    • Export Citation
  • 38

    Watts NB Adverse bone effects of medications used to treat non-skeletal disorders. Osteoporosis International 2017 28 27412746. (https://doi.org/10.1007/s00198-017-4171-4)

    • Search Google Scholar
    • Export Citation
  • 39

    Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET & National Bone Health Alliance Bone Turnover Marker Project. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporosis International 2017 28 25412556. (https://doi.org/10.1007/s00198-017-4082-4)

    • Search Google Scholar
    • Export Citation
  • 40

    Højsager FD, Rand MS, Pedersen SB, Nissen N, Jørgensen NR. Fracture-induced changes in biomarkers CTX, PINP, OC, and BAP-a systematic review. Osteoporosis International 2019 30 23812389. (https://doi.org/10.1007/s00198-019-05132-1)

    • Search Google Scholar
    • Export Citation
  • 41

    Martín-Fernández M, Valencia K, Zandueta C, Ormazábal C, Martínez-Canarias S, Lecanda F, de la Piedra C. The usefulness of bone biomarkers for monitoring treatment disease: a comparative study in osteolytic and osteosclerotic bone metastasis models. Translational Oncology 2017 10 255261. (https://doi.org/10.1016/j.tranon.2016.12.001)

    • Search Google Scholar
    • Export Citation
  • 42

    Dovio A, Perazzolo L, Osella G, Ventura M, Termine A, Milano E, Bertolotto A, Angeli A. Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. Journal of Clinical Endocrinology and Metabolism 2004 89 49234928. (https://doi.org/10.1210/jc.2004-0164)

    • Search Google Scholar
    • Export Citation