Metabolic surgery improves the unbalanced proportion of peripheral blood myeloid dendritic cells and T lymphocytes in obese patients

in European Journal of Endocrinology
View More View Less
  • 1 National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
  • | 2 Departments of Metabolic Surgery and Biliopancreatic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China

Correspondence should be addressed to Z Zhou or J Zhang; Email: zhouzhiguang@csu.edu.cn or Doctorzhangjj@csu.edu.cn

*(J Zhang and X Chen contributed equally to this work)

Restricted access

Background

Obesity is associated with impaired immune function and chronic low-grade inflammation. Metabolic surgery is one of the most effective therapies for treating obesity and related metabolic disorders. We aimed to explore the pathophysiological roles of peripheral dendritic cells (DCs) and T lymphocytes in metabolic surgery.

Method

In this observational cohort study, a total of 106 individuals, including obese participants with or without T2DM, overweight subjects and normal controls, were recruited. All obese participants underwent laparoscopic sleeve gastrectomy surgery and returned for the evaluation of the clinical indicators after surgery. We evaluated the frequencies of circulating DCs subsets (myeloid (mDCs) and plasmacytoid (pDCs)), the pro-inflammatory (Th1 and Th17) and anti-inflammatory (Th2 and Treg) T cell subsets by flow cytometry.

Results

Compared with normal controls, the frequencies of mDCs, Th1 and Th17 cells increased, while Treg and Th2 cells decreased in the obese participants. The frequency of mDCs and Th1 cells consistently declined after surgery compared with baseline in the obese patients and were restored to the levels observed in the normal controls after surgery. Moreover, the frequency of Treg cells was increased at 6 months after surgery in the obese patients with T2DM, and Th17 cells declined at 6 months after surgery in the severely obese patients without T2DM.

Conclusion

This study indicates that metabolic surgery can effectively improve imbalanced immune cells in peripheral blood and restore the proportion of immune cells to a normal range during a 12-month follow-up.

Supplementary Materials

    • Supplementary Figure 1: Flow cytometry analysis of peripheral DCs and T cell subsets. A: The initial PBMCs were derived from a gate (defined on FSC and SSC) followed by single-cell discrimination. B-C: Representative dot plot showing the gating strategy for DCs (LIN-HLA-DR+) on PBMCs. D: Representative dot plot showing the gating strategy for mDCs and pDCs gated on DCs. E: Representative dot plot showing the gating strategy for CD4+ T cells on PBMCs. F-I: Representative dot plot showing the gating。。 strategy for Th1 cells (F), Th17 cells (G), Th2 cells (H) and Treg cells (I) gated on CD4+ T cells.
    • Supplementary Figure 2: Alterations (± SEM) in mDCs (A), Th1 (B), Th17 (C), Treg (D) and Th2 (E) cells at baseline. * P < 0.05, ** P < 0.01, *** P < 0.001 for the overweight group or obese subjects compared with the normal controls group. # P < 0.05, ## P < 0.01, ### P < 0.001 for the obese subjects compared with the overweight group.
    • Supplementary Table 1: Anthropometric and laboratory data of the female and male obese (BMI ≥27.5 kg/m2) subjects
    • Supplementary Table 2: Anthropometric and laboratory data of the obese (BMI ≥27.5 kg/m2) subjects with or without T2DM
    • Supplementary Table 3: Anthropometric and laboratory data of the severely obese (BMI ≥ 37.5 kg/m2) subjects with or without T2DM
    • Supplementary Table 4: Correlation between alterations in circulating immune cell subsets and clinical data of the obese (BMI ≥ 27.5 kg/m2) subjects during the 12 months after surgery
    • Supplementary Table 5: Multiple linear regression analysis of alterations in circulating immune cell subsets and clinical data during the 12 months after surgery

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 304 304 304
Full Text Views 12 12 12
PDF Downloads 17 17 17
  • 1

    Simonson DC, Halperin F, Foster K, Vernon A, Goldfine AB. Clinical and patient-centered outcomes in obese patients with type 2 diabetes 3 years after randomization to Roux-en-Y gastric bypass surgery versus intensive lifestyle management: the SLIMM-T2D study. Diabetes Care 2018 41 670679. (https://doi.org/10.2337/dc17-0487)

    • Search Google Scholar
    • Export Citation
  • 2

    Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KG, Zimmet PZ, Del Prato S, Ji L, Sadikot SM & Herman WH et al.Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by International Diabetes Organizations. Diabetes Care 2016 39 861877. (https://doi.org/10.2337/dc16-0236)

    • Search Google Scholar
    • Export Citation
  • 3

    Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G & Atherosclerosis Risk in Communities Study. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003 52 17991805. (https://doi.org/10.2337/diabetes.52.7.1799)

    • Search Google Scholar
    • Export Citation
  • 4

    Tang T, Zhang J, Yin J, Staszkiewicz J, Gawronska-Kozak B, Jung DY, Ko HJ, Ong H, Kim JK & Mynatt R et al.Uncoupling of inflammation and insulin resistance by NF-kappaB in transgenic mice through elevated energy expenditure. Journal of Biological Chemistry 2010 285 46374644. (https://doi.org/10.1074/jbc.M109.068007)

    • Search Google Scholar
    • Export Citation
  • 5

    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 2002 420 333336. (https://doi.org/10.1038/nature01137)

    • Search Google Scholar
    • Export Citation
  • 6

    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001 286 327334. (https://doi.org/10.1001/jama.286.3.327)

    • Search Google Scholar
    • Export Citation
  • 7

    Monteiro-Sepulveda M, Touch S, Mendes-Sa C, Andre S, Poitou C, Allatif O, Cotillard A, Fohrer-Ting H, Hubert EL & Remark R et al.Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metabolism 2015 22 113124. (https://doi.org/10.1016/j.cmet.2015.05.020)

    • Search Google Scholar
    • Export Citation
  • 8

    Asghar A, Sheikh N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cellular Immunology 2017 315 1826. (https://doi.org/10.1016/j.cellimm.2017.03.001)

    • Search Google Scholar
    • Export Citation
  • 9

    Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJM, Liu YJ, MacPherson G & Randolph GJ et al.Nomenclature of monocytes and dendritic cells in blood. Blood 2010 116 e74e80. (https://doi.org/10.1182/blood-2010-02-258558)

    • Search Google Scholar
    • Export Citation
  • 10

    Kelly A, Fahey R, Fletcher JM, Keogh C, Carroll AG, Siddachari R, Geoghegan J, Hegarty JE, Ryan EJ, O'Farrelly C. CD141(+) myeloid dendritic cells are enriched in healthy human liver. Journal of Hepatology 2014 60 135142. (https://doi.org/10.1016/j.jhep.2013.08.007)

    • Search Google Scholar
    • Export Citation
  • 11

    O'Doherty U, Peng M, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N, Steinman RM. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 1994 82 487493.

    • Search Google Scholar
    • Export Citation
  • 12

    Van Voorhis WC, Hair LS, Steinman RM, Kaplan G. Human dendritic cells. Enrichment and characterization from peripheral blood. Journal of Experimental Medicine 1982 155 11721187. (https://doi.org/10.1084/jem.155.4.1172)

    • Search Google Scholar
    • Export Citation
  • 13

    Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. Journal of Immunology 2000 165 60376046. (https://doi.org/10.4049/jimmunol.165.11.6037)

    • Search Google Scholar
    • Export Citation
  • 14

    MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood 2002 100 45124520. (https://doi.org/10.1182/blood-2001-11-0097)

    • Search Google Scholar
    • Export Citation
  • 15

    Lindstedt M, Lundberg K, Borrebaeck CA. Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. Journal of Immunology 2005 175 48394846. (https://doi.org/10.4049/jimmunol.175.8.4839)

    • Search Google Scholar
    • Export Citation
  • 16

    Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metabolism 2008 8 301309. (https://doi.org/10.1016/j.cmet.2008.08.015)

    • Search Google Scholar
    • Export Citation
  • 17

    Zlotnikov-Klionsky Y, Nathansohn-Levi B, Shezen E, Rosen C, Kagan S, Bar-On L, Jung S, Shifrut E, Reich-Zeliger S & Friedman N et al.Perforin-positive dendritic cells exhibit an immuno-regulatory role in metabolic syndrome and autoimmunity. Immunity 2015 43 776787. (https://doi.org/10.1016/j.immuni.2015.08.015)

    • Search Google Scholar
    • Export Citation
  • 18

    Chen Y, Tian J, Tian X, Tang X, Rui K, Tong J, Lu L, Xu H, Wang S. Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS ONE 2014 9 e92450. (https://doi.org/10.1371/journal.pone.0092450)

    • Search Google Scholar
    • Export Citation
  • 19

    McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. Journal of Clinical Investigation 2017 127 513. (https://doi.org/10.1172/JCI88876)

    • Search Google Scholar
    • Export Citation
  • 20

    Deifl S, Kitzmuller C, Steinberger P, Himly M, Jahn-Schmid B, Fischer GF, Zlabinger GJ, Bohle B. Differential activation of dendritic cells by toll-like receptors causes diverse differentiation of naive CD4+ T cells from allergic patients. Allergy 2014 69 16021609. (https://doi.org/10.1111/all.12501)

    • Search Google Scholar
    • Export Citation
  • 21

    Esterhazy D, Loschko J, London M, Jove V, Oliveira TY, Mucida D. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance. Nature Immunology 2016 17 545555. (https://doi.org/10.1038/ni.3408)

    • Search Google Scholar
    • Export Citation
  • 22

    Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, Dorfman R, Wang Y, Zielenski J & Mastronardi F et al.Normalization of obesity-associated insulin resistance through immunotherapy. Nature Medicine 2009 15 921929. (https://doi.org/10.1038/nm.2001)

    • Search Google Scholar
    • Export Citation
  • 23

    Zeng C, Shi X, Zhang B, Liu H, Zhang L, Ding W, Zhao Y. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. Journal of Molecular Medicine 2012 90 175186. (https://doi.org/10.1007/s00109-011-0816-5)

    • Search Google Scholar
    • Export Citation
  • 24

    Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, Lacroix-Desmazes S, Bayry J, Kaveri SV & Clement K et al.T cell-derived IL-22 amplifies IL-1beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes 2014 63 19661977. (https://doi.org/10.2337/db13-1511)

    • Search Google Scholar
    • Export Citation
  • 25

    Fabbrini E, Cella M, McCartney SA, Fuchs A, Abumrad NA, Pietka TA, Chen Z, Finck BN, Han DH & Magkos F et al.Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 2013 145 36674.e1. (https://doi.org/10.1053/j.gastro.2013.04.010)

    • Search Google Scholar
    • Export Citation
  • 26

    Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine 1998 15 539553. (https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S)

    • Search Google Scholar
    • Export Citation
  • 27

    Zhou BF Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults – study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomedical and Environmental Sciences 2002 15 8396.

    • Search Google Scholar
    • Export Citation
  • 28

    Musilli C, Paccosi S, Pala L, Gerlini G, Ledda F, Mugelli A, Rotella CM, Parenti A. Characterization of circulating and monocyte-derived dendritic cells in obese and diabetic patients. Molecular Immunology 2011 49 234238. (https://doi.org/10.1016/j.molimm.2011.08.019)

    • Search Google Scholar
    • Export Citation
  • 29

    Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003 52 812817. (https://doi.org/10.2337/diabetes.52.3.812)

    • Search Google Scholar
    • Export Citation
  • 30

    Sell H, Divoux A, Poitou C, Basdevant A, Bouillot JL, Bedossa P, Tordjman J, Eckel J, Clement K. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. Journal of Clinical Endocrinology and Metabolism 2010 95 28922896. (https://doi.org/10.1210/jc.2009-2374)

    • Search Google Scholar
    • Export Citation
  • 31

    Zhang C, Zhang J, Liu W, Chen X, Liu Z, Zhou Z. Improvements in humoral immune function and glucolipid metabolism after laparoscopic sleeve gastrectomy in patients with obesity. Surgery for Obesity and Related Diseases 2019 15 14551463. (https://doi.org/10.1016/j.soard.2019.05.021)

    • Search Google Scholar
    • Export Citation
  • 32

    Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D & Bouillot JL et al.Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005 54 22772286. (https://doi.org/10.2337/diabetes.54.8.2277)

    • Search Google Scholar
    • Export Citation
  • 33

    Frikke-Schmidt H, Zamarron BF, O'Rourke RW, Sandoval DA, Lumeng CN, Seeley RJ. Weight loss independent changes in adipose tissue macrophage and T cell populations after sleeve gastrectomy in mice. Molecular Metabolism 2017 6 317326. (https://doi.org/10.1016/j.molmet.2017.02.004)

    • Search Google Scholar
    • Export Citation
  • 34

    Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D & Skurk T et al.T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arteriosclerosis, Thrombosis, and Vascular Biology 2008 28 13041310. (https://doi.org/10.1161/ATVBAHA.108.165100)

    • Search Google Scholar
    • Export Citation
  • 35

    Gyllenhammer LE, Lam J, Alderete TL, Allayee H, Akbari O, Katkhouda N, Goran MI. Lower omental t-regulatory cell count is associated with higher fasting glucose and lower beta-cell function in adults with obesity. Obesity 2016 24 12741282. (https://doi.org/10.1002/oby.21507)

    • Search Google Scholar
    • Export Citation
  • 36

    Eller K, Kirsch A, Wolf AM, Sopper S, Tagwerker A, Stanzl U, Wolf D, Patsch W, Rosenkranz AR, Eller P. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 2011 60 29542962. (https://doi.org/10.2337/db11-0358)

    • Search Google Scholar
    • Export Citation
  • 37

    Leal RI, Mok WH, Pearson FE, Minoda Y, Kenna TJ, Barnard RT, Radford KJ, Human Blood CD. 1c(+) dendritic cells promote Th1 and Th17 effector function in memory CD4(+) T cells. Frontiers in Immunology 2017 8 971. (https://doi.org/10.3389/fimmu.2017.00971)

    • Search Google Scholar
    • Export Citation
  • 38

    Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, Blin-Wakkach C, Anty R, Iannelli A & Gugenheim J et al.Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 2012 61 22382247. (https://doi.org/10.2337/db11-1274)

    • Search Google Scholar
    • Export Citation
  • 39

    Viardot A, Lord RV, Samaras K. The effects of weight loss and gastric banding on the innate and adaptive immune system in type 2 diabetes and prediabetes. Journal of Clinical Endocrinology and Metabolism 2010 95 28452850. (https://doi.org/10.1210/jc.2009-2371)

    • Search Google Scholar
    • Export Citation
  • 40

    Sakaguchi S Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology 2005 6 345352. (https://doi.org/10.1038/ni1178)

    • Search Google Scholar
    • Export Citation
  • 41

    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C & Shoelson S et al.Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine 2009 15 930939. (https://doi.org/10.1038/nm.2002)

    • Search Google Scholar
    • Export Citation
  • 42

    Bapat SP, Myoung Suh J, Fang S, Liu S, Zhang Y, Cheng A, Zhou C, Liang Y, LeBlanc M & Liddle C et al.Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 2015 528 137141. (https://doi.org/10.1038/nature16151)

    • Search Google Scholar
    • Export Citation
  • 43

    Rizk NM, Fadel A, AlShammari W, Younes N, Bashah M. The immunophenotyping changes of peripheral CD4+ T lymphocytes and inflammatory markers of class III obesity subjects after laparoscopic gastric sleeve surgery – a follow-up study. Journal of Inflammation Research 2021 14 17431757. (https://doi.org/10.2147/JIR.S282189)

    • Search Google Scholar
    • Export Citation
  • 44

    Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, Yang K, Wu HY, Weiner HL. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. PNAS 2010 107 97659770. (https://doi.org/10.1073/pnas.0908771107)

    • Search Google Scholar
    • Export Citation
  • 45

    van Beek L, Lips MA, Visser A, Pijl H, Ioan-Facsinay A, Toes R, Berends FJ, Willems Van Dijk K, Koning F, van Harmelen V. Increased systemic and adipose tissue inflammation differentiates obese women with T2DM from obese women with normal glucose tolerance. Metabolism: Clinical and Experimental 2014 63 492501. (https://doi.org/10.1016/j.metabol.2013.12.002)

    • Search Google Scholar
    • Export Citation
  • 46

    Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, Yamamoto T, Anzai A, Isobe S & Yoshida N et al.Obesity accelerates T cell senescence in murine visceral adipose tissue. Journal of Clinical Investigation 2016 126 46264639. (https://doi.org/10.1172/JCI88606)

    • Search Google Scholar
    • Export Citation
  • 47

    Zhang H, Wang Y, Zhang J, Potter BJ, Sowers JR, Zhang C. Bariatric surgery reduces visceral adipose inflammation and improves endothelial function in type 2 diabetic mice. Arteriosclerosis, Thrombosis, and Vascular Biology 2011 31 20632069. (https://doi.org/10.1161/ATVBAHA.111.225870)

    • Search Google Scholar
    • Export Citation
  • 48

    Zuniga LA, Shen WJ, Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C, Andrade SM, Cua DJ, Kraemer FB, Butcher EC. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. Journal of Immunology 2010 185 69476959. (https://doi.org/10.4049/jimmunol.1001269)

    • Search Google Scholar
    • Export Citation
  • 49

    Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nature Reviews: Immunology 2014 14 2435. (https://doi.org/10.1038/nri3567)

    • Search Google Scholar
    • Export Citation