A recurrent familial partial lipodystrophy due to a monoallelic or biallelic LMNA founder variant highlights the multifaceted cardiac manifestations of metabolic laminopathies

in European Journal of Endocrinology
View More View Less
  • 1 Department of Endocrinology, Diabetes and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
  • | 2 University of La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France
  • | 3 Department of Endocrinology, Diabetes and Nutrition, Felix-Guyon, Centre Hospitalo-Universitaire de la Réunion, Saint-Denis, La Réunion, France
  • | 4 Centre d’Investigation Clinique – Epidémiologie Clinique (CIC-EC) U1410 INSERM, Centre Hospitalo-Universitaire de la Réunion, La Réunion, France
  • | 5 Délégation à la Recherche Clinique et à l’Innovation de La Réunion (DRCI), Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
  • | 6 Sorbonne Université, Inserm UMR S938, Saint-Antoine Research Centre, AP-HP, Saint-Antoine Hospital, Genetics, Molecular Biology and Endocrinology Departments, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
  • | 7 Department of Neurology and Rare Neuromuscular Diseases, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
  • | 8 Genetic Department, GHSR, Centre Hospitalo-Universitaire de la Réunion, Saint-Pierre, La Réunion, France
  • | 9 Genetic Department, Felix-Guyon, Centre Hospitalo-Universitaire de la Réunion, Saint-Denis, La Réunion, France

Correspondence should be addressed to E Nobécourt Email estelle.nobecourt@chu-reunion.fr
Restricted access

Aims

LMNA-linked familial partial lipodystrophy type 2 (FPLD2) leads to insulin resistance-associated metabolic complications and cardiovascular diseases. We aimed to characterise the disease phenotype in a cohort of patients carrying an LMNA founder variant.

Methods

We collected clinical and biological data from patients carrying the monoallelic or biallelic LMNA p.(Thr655Asnfs*49) variant (n =  65 and 13, respectively) and 19 non-affected relative controls followed-up in Reunion Island Lipodystrophy Competence Centre, France.

Results

Two-thirds of patients with FPLD2 (n = 51) and one-third of controls (n = 6) displayed lipodystrophy and/or lean or android morphotype (P  = 0.02). Although age and BMI were not statistically different between the two groups, the insulin resistance index (median HOMA-IR: 3.7 vs 1.5, P  = 0.001), and the prevalence of diabetes, dyslipidaemia, and non-alcoholic fatty liver disease were much higher in patients with FPLD2 (51.3 vs 15.8%, 83.3 vs 42.1%, and 83.1 vs 33.3% (all P ≤ 0.01), respectively). Atherosclerosis tended to be more frequent in patients with FPLD2 (P  = 0.07). Compared to heterozygous, homozygous patients displayed more severe lipoatrophy and metabolic alterations (lower BMI, fat mass, leptin and adiponectin, and higher triglycerides P ≤ 0.03) and tended to develop diabetes more frequently, and earlier (P  = 0.09). Dilated cardiomyopathy and/or rhythm/conduction disturbances were the hallmark of the disease in homozygous patients, leading to death in four cases.

Conclusions

The level of expression of the LMNA ‘Reunionese’ variant determines the severity of both lipoatrophy and metabolic complications. It also modulates the cardiac phenotype, from atherosclerosis to severe cardiomyopathy, highlighting the need for careful cardiac follow-up in affected patients.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 2337 2337 89
Full Text Views 119 119 10
PDF Downloads 126 126 13
  • 1

    Shackleton S, Lloyd DJ, Jackson SNJ, Evans R, Niermeijer MF, Singh BM, Schmidt H, Brabant G, Kumar S & Durrington PN et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nature Genetics 2000 24 153156. (https://doi.org/10.1038/72807)

    • Search Google Scholar
    • Export Citation
  • 2

    Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Human Molecular Genetics 2000 9 109112. (https://doi.org/10.1093/hmg/9.1.109)

    • Search Google Scholar
    • Export Citation
  • 3

    Chiquette E, Oral EA, Garg A, Araújo-Vilar D, Dhankhar P. Estimating the prevalence of generalized and partial lipodystrophy: findings and challenges. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2017 10 375383. (https://doi.org/10.2147/DMSO.S130810)

    • Search Google Scholar
    • Export Citation
  • 4

    Gonzaga-Jauregui C, Ge W, Staples J, Van Hout C, Yadav A, Colonie R, Leader JB, Kirchner HL, Murray MF & Reid JG et al. Clinical and molecular prevalence of lipodystrophy in an unascertained large clinical care cohort. Diabetes 2020 69 249258. (https://doi.org/10.2337/db19-0447)

    • Search Google Scholar
    • Export Citation
  • 5

    Akinci B, Oral EA, Neidert A, Rus D, Cheng WY, Thompson-Leduc P, Cheung HC, Bradt P, Foss de Freitas MC & Montenegro RM et al. Comorbidities and survival in patients with lipodystrophy: an International Chart Review Study. Journal of Clinical Endocrinology and Metabolism 2019 104 51205135. (https://doi.org/10.1210/jc.2018-02730)

    • Search Google Scholar
    • Export Citation
  • 6

    Sollier C, Vatier C, Capel E, Lascols O, Auclair M, Janmaat S, Fève B, Jéru I, Vigouroux C. Lipodystrophic syndromes: from diagnosis to treatment. Annales d’Endocrinologie 2020 81 5160. (https://doi.org/10.1016/j.ando.2019.10.003)

    • Search Google Scholar
    • Export Citation
  • 7

    Decaudain A, Vantyghem MC, Guerci B, Hécart AC, Auclair M, Reznik Y, Narbonne H, Ducluzeau PH, Donadille B & Lebbé C et al. New metabolic phenotypes in laminopathies: LMNA mutations in patients with severe metabolic syndrome. Journal of Clinical Endocrinology and Metabolism 2007 92 48354844. (https://doi.org/10.1210/jc.2007-0654)

    • Search Google Scholar
    • Export Citation
  • 8

    Mosbah H, Vatier C, Boccara F, Jéru I, Vantyghem MC, Donadille B, Wahbi K, Vigouroux C. Cardiovascular complications of lipodystrophic syndromes: focus on laminopathies. Annales d’Endocrinologie 2021 82 146148. (https://doi.org/10.1016/j.ando.2020.03.002)

    • Search Google Scholar
    • Export Citation
  • 9

    Mory PB, Crispim F, Freire MBS, Salles JEN, Valério CM, Godoy-Matos AF, Dib SA, Moisés RS. Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations. European Journal of Endocrinology 2012 167 423431. (https://doi.org/10.1530/EJE-12-0268)

    • Search Google Scholar
    • Export Citation
  • 10

    Bidault G, Garcia M, Vantyghem MC, Ducluzeau PH, Morichon R, Thiyagarajah K, Moritz S, Capeau J, Vigouroux C, Béréziat V. Lipodystrophy-linked LMNA p.R482W mutation induces clinical early atherosclerosis and in vitro endothelial dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology 2013 33 21622171. (https://doi.org/10.1161/ATVBAHA.113.301933)

    • Search Google Scholar
    • Export Citation
  • 11

    Kwapich M, Lacroix D, Espiard S, Ninni S, Brigadeau F, Kouakam C, Degroote P, Laurent JM, Tiffreau V & Jannin A et al. Cardiometabolic assessment of lamin A/C gene mutation carriers: a phenotype–genotype correlation. Diabetes and Metabolism 2019 45 382389. (https://doi.org/10.1016/j.diabet.2018.09.006)

    • Search Google Scholar
    • Export Citation
  • 12

    Resende ATP, Martins CS, Bueno AC, Moreira AC, Foss-Freitas MC, de Castro M. Phenotypic diversity and glucocorticoid sensitivity in patients with familial partial lipodystrophy type 2. Clinical Endocrinology 2019 91 94103. (https://doi.org/10.1111/cen.13984)

    • Search Google Scholar
    • Export Citation
  • 13

    Sekizkardes H, Cochran E, Malandrino N, Garg A, Brown RJ. Efficacy of metreleptin treatment in familial partial lipodystrophy due to PPARG vs LMNA pathogenic variants. Journal of Clinical Endocrinology and Metabolism 2019 104 30683076. (https://doi.org/10.1210/jc.2018-02787)

    • Search Google Scholar
    • Export Citation
  • 14

    Patni N, Li X, Adams-Huet B, Vasandani C, Gomez-Diaz RA, Garg A. Regional body fat changes and metabolic complications in children with Dunnigan lipodystrophy-causing LMNA variants. Journal of Clinical Endocrinology and Metabolism 2019 104 10991108. (https://doi.org/10.1210/jc.2018-01922)

    • Search Google Scholar
    • Export Citation
  • 15

    Florwick A, Dharmaraj T, Jurgens J, Valle D, Wilson KL. LMNA sequences of 60,706 unrelated individuals reveal 132 novel missense variants in A-type lamins and suggest a link between variant p.G602S and type 2 diabetes. Frontiers in Genetics 2017 8 79. (https://doi.org/10.3389/fgene.2017.00079)

    • Search Google Scholar
    • Export Citation
  • 16

    Ajluni N, Meral R, Neidert AH, Brady GF, Buras E, McKenna B, DiPaola F, Chenevert TL, Horowitz JF & Buggs-Saxton C et al. Spectrum of disease associated with partial lipodystrophy: lessons from a trial cohort. Clinical Endocrinology 2017 86 698707. (https://doi.org/10.1111/cen.13311)

    • Search Google Scholar
    • Export Citation
  • 17

    Jeru I, Vatier C, Vantyghem MC, Lascols O, Vigouroux C. LMNA-associated partial lipodystrophy: anticipation of metabolic complications. Journal of Medical Genetics 2017 54 413416. (https://doi.org/10.1136/jmedgenet-2016-104437)

    • Search Google Scholar
    • Export Citation
  • 18

    Worman HJ Nuclear lamins and laminopathies. Journal of Pathology 2012 226 316325. (https://doi.org/10.1002/path.2999)

  • 19

    Guénantin AC, Briand N, Bidault G, Afonso P, Béréziat V, Vatier C, Lascols O, Caron-Debarle M, Capeau J, Vigouroux C. Nuclear envelope-related lipodystrophies. Seminars in Cell and Developmental Biology 2014 29 148157. (https://doi.org/10.1016/j.semcdb.2013.12.015)

    • Search Google Scholar
    • Export Citation
  • 20

    Garg A, Vinaitheerthan M, Weatherall PT, Bowcock AM. Phenotypic heterogeneity in patients with familial partial lipodystrophy (Dunnigan variety) related to the site of missense mutations in Lamin A/C gene. Journal of Clinical Endocrinology and Metabolism 2001 86 5965. (https://doi.org/10.1210/jcem.86.1.7121)

    • Search Google Scholar
    • Export Citation
  • 21

    Le Dour C, Schneebeli S, Bakiri F, Darcel F, Jacquemont ML, Maubert MA, Auclair M, Jeziorowska D, Reznik Y & Béréziat V et al. A homozygous mutation of prelamin-A preventing its farnesylation and maturation leads to a severe lipodystrophic phenotype: new insights into the pathogenicity of nonfarnesylated prelamin-A. Journal of Clinical Endocrinology and Metabolism 2011 96 E856E862. (https://doi.org/10.1210/jc.2010-2234)

    • Search Google Scholar
    • Export Citation
  • 22

    Andre P, Schneebeli S, Vigouroux C, Lascols O, Schaaf M, Chevalier P. Metabolic and cardiac phenotype characterization in 37 atypical Dunnigan patients with nonfarnesylated mutated prelamin A. American Heart Journal 2015 169 587593. (https://doi.org/10.1016/j.ahj.2014.12.021)

    • Search Google Scholar
    • Export Citation
  • 23

    Brown RJ, Araujo-Vilar D, Cheung PT, Dunger D, Garg A, Jack M, Mungai L, Oral EA, Patni N & Rother KI et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. Journal of Clinical Endocrinology and Metabolism 2016 101 45004511. (https://doi.org/10.1210/jc.2016-2466)

    • Search Google Scholar
    • Export Citation
  • 24

    Sollier C, Capel E, Aguilhon C, Smirnov V, Auclair M, Douillard C, Ladsous M, Defoort-Dhellemmes S, Gorwood J & Braud L et al. LIPE-related lipodystrophic syndrome: clinical features and disease modeling using adipose stem cells. European Journal of Endocrinology 2021 184 155168. (https://doi.org/10.1530/EJE-20-1013)

    • Search Google Scholar
    • Export Citation
  • 25

    Wallace TM, Matthews DR. The assessment of insulin resistance in man. Diabetic Medicine 2002 19 527534. (https://doi.org/10.1046/j.1464-5491.2002.00745.x)

    • Search Google Scholar
    • Export Citation
  • 26

    Eckel RH, Cornier MA. Update on the NCEP ATP-III emerging cardiometabolic risk factors. BMC Medicine 2014 12 115. (https://doi.org/10.1186/1741-7015-12-115)

    • Search Google Scholar
    • Export Citation
  • 27

    Authors/Task Force Members, ESC Committee for Practice Guidelines (CPG) & ESC National Cardiac Societies. ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 2019 290 140205. (https://doi.org/10.1016/j.atherosclerosis.2019.08.014)

    • Search Google Scholar
    • Export Citation
  • 28

    Webb M, Yeshua H, Zelber-Sagi S, Santo E, Brazowski E, Halpern Z, Oren R. Diagnostic value of a computerized hepatorenal index for sonographic quantification of liver steatosis. American Journal of Roentgenology 2009 192 909914. (https://doi.org/10.2214/AJR.07.4016)

    • Search Google Scholar
    • Export Citation
  • 29

    Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, S Sulkowski M, Torriani FJ, Dieterich DT & Thomas DL et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006 43 13171325. (https://doi.org/10.1002/hep.21178)

    • Search Google Scholar
    • Export Citation
  • 30

    Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, Lok AS. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003 38 518526. (https://doi.org/10.1053/jhep.2003.50346)

    • Search Google Scholar
    • Export Citation
  • 31

    Wong VWS, Vergniol J, Wong GLH, Foucher J, Chan HLY, Le Bail B, Choi PCL, Kowo M, Chan AWH & Merrouche W et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010 51 454462. (https://doi.org/10.1002/hep.23312)

    • Search Google Scholar
    • Export Citation
  • 32

    Valensi P, Henry P, Boccara F, Cosson E, Prevost G, Emmerich J, Ernande L, Marcadet D, Mousseaux E & Rouzet F et al. Risk stratification and screening for coronary artery disease in asymptomatic patients with diabetes mellitus: position paper of the French Society of Cardiology and the French-speaking Society of Diabetology. Diabetes and Metabolism 2021 47 101185. (https://doi.org/10.1016/j.diabet.2020.08.002)

    • Search Google Scholar
    • Export Citation
  • 33

    CKD Work Group. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements 2013 3 1150. (https://doi.org/10.1038/kisup.2012.64)

    • Search Google Scholar
    • Export Citation
  • 34

    Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop. Consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility 2004 81 1925. (https://doi.org/10.1016/j.fertnstert.2003.10.004)

    • Search Google Scholar
    • Export Citation
  • 35

    Gouronc A, Zilliox V, Jacquemont ML, Darcel F, Leuvrey AS, Nourisson E, Antin M, Alessandri JL, Doray B & Gueguen P et al. High prevalence of Bardet‐Biedl syndrome in la Réunion Island is due to a founder variant in ARL6/BBS3. Clinical Genetics 2020 98 166171. (https://doi.org/10.1111/cge.13768)

    • Search Google Scholar
    • Export Citation
  • 36

    Alessandri JL, Gordon CT, Jacquemont ML, Gruchy N, Ajeawung NF, Benoist G, Oufadem M, Chebil A, Duffourd Y & Dumont C et al. Recessive loss of function PIGN alleles, including an intragenic deletion with founder effect in la Réunion Island, in patients with Fryns syndrome. European Journal of Human Genetics 2018 26 340349. (https://doi.org/10.1038/s41431-017-0087-x)

    • Search Google Scholar
    • Export Citation
  • 37

    Dubut V, Murail P, Pech N, Thionville MD, Cartault F. Inter- and extra-Indian admixture and genetic diversity in Reunion island revealed by analysis of mitochondrial DNA. Annals of Human Genetics 2009 73 314334. (https://doi.org/10.1111/j.1469-1809.2009.00519.x)

    • Search Google Scholar
    • Export Citation
  • 38

    Garg A Clinical review: lipodystrophies: genetic and acquired body fat disorders. Journal of Clinical Endocrinology and Metabolism 2011 96 33133325. (https://doi.org/10.1210/jc.2011-1159)

    • Search Google Scholar
    • Export Citation
  • 39

    Fuentes S, Mandereau-Bruno L, Regnault N, Bernillon P, Bonaldi C, Cosson E, Fosse-Edorh S. Is the type 2 diabetes epidemic plateauing in France? A nationwide population-based study. Diabetes and Metabolism 2020 46 472479. (https://doi.org/10.1016/j.diabet.2019.12.006)

    • Search Google Scholar
    • Export Citation
  • 40

    Vantyghem MC, Pigny P, Maurage CA, Rouaix-Emery N, Stojkovic T, Cuisset JM, Millaire A, Lascols O, Vermersch P & Wemeau JL et al. Patients with familial partial lipodystrophy of the Dunnigan type due to a LMNA R482W mutation show muscular and cardiac abnormalities. Journal of Clinical Endocrinology and Metabolism 2004 89 53375346. (https://doi.org/10.1210/jc.2003-031658)

    • Search Google Scholar
    • Export Citation
  • 41

    Akinci G, Topaloglu H, Demir T, Danyeli AE, Talim B, Keskin FE, Kadioglu P, Talip E, Altay C & Yaylali GF et al. Clinical spectra of neuromuscular manifestations in patients with lipodystrophy: a multicenter study. Neuromuscular Disorders 2017 27 923930. (https://doi.org/10.1016/j.nmd.2017.05.015)

    • Search Google Scholar
    • Export Citation
  • 42

    Özen S, Akıncı B, Oral EA. Current diagnosis, treatment and clinical challenges in the management of lipodystrophy syndromes in children and young people. Journal of Clinical Research in Pediatric Endocrinology 2020 12 1728. (https://doi.org/10.4274/jcrpe.galenos.2019.2019.0124)

    • Search Google Scholar
    • Export Citation
  • 43

    Mann JP, Savage DB. What lipodystrophies teach us about the metabolic syndrome. Journal of Clinical Investigation 2019 129 40094021. (https://doi.org/10.1172/JCI129190)

    • Search Google Scholar
    • Export Citation
  • 44

    Montenegro RM, Costa-Riquetto AD, Fernandes VO, Montenegro APDR, de Santana LS, Jorge AAL, Karbage LBAS, Aguiar LB, Carvalho FHC & Teles MG et al. Homozygous and heterozygous nuclear lamin A p.R582C mutation: different lipodystrophic phenotypes in the same kindred. Frontiers in Endocrinology 2018 9 458. (https://doi.org/10.3389/fendo.2018.00458)

    • Search Google Scholar
    • Export Citation
  • 45

    Wiltshire KM, Hegele RA, Innes AM, Brownell AKW. Homozygous Lamin A/C familial lipodystrophy R482Q mutation in autosomal recessive emery dreifuss muscular dystrophy. Neuromuscular Disorders 2013 23 265268. (https://doi.org/10.1016/j.nmd.2012.11.011)

    • Search Google Scholar
    • Export Citation