Thyroid function is not associated with brown adipose tissue volume and 18F-fluorodeoxyglucose uptake in young euthyroid adults

in European Journal of Endocrinology
View More View Less
  • 1 PROFITH “PROmoting FITness and Health through Physical Activity” Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
  • | 2 Pennington Biomedical Research Center, Baton Rouge, Louisiano, USA
  • | 3 Department of Endocrinology, Fundación Hospital de Jove, Gijón, Spain
  • | 4 Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
  • | 5 Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix” Center of Biomedical Research, University of Granada, Granada, Spain
  • | 6 Instituto de Investigación Biosanitaria (Ibs. Granada), Granada, Spain
  • | 7 CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
  • | 8 Department of Medicine, University of Granada, Granada, Spain
  • | 9 CIBERFES, Instituto de Salud Carlos III, Granada, Spain
  • | 10 Endocrinology and Nutrition Service, University Hospital San Cecilio, Granada, Spain
  • | 11 Nuclear Medicine Service, Virgen de las Nieves University Hospital, Granada, Spain

Correspondence should be addressed to E Merchán-Ramírez; Email: elisamerchan@ugr.es

*(E Merchán-Ramírez and G Sanchez-Delgado contributed equally to this work)

Restricted access

Purpose

Thyroid hormones (THs) are important mediators of brown adipose tissue (BAT) differentiation. However, the association of TH concentrations with human BAT is unclear. The present work examines the associations between circulating thyroid-stimulating hormone (TSH) and THs concentrations (i.e. free triiodothyronine, FT3, and free thyroxine, FT4), under thermoneutral (22–23°C) and cold-induced conditions, and BAT volume, 18F-fluorodeoxyglucose (18F-FDG) uptake and mean radiodensity.

Methods

A total of 106 young healthy, euthyroid adults (34 men/72 women; 22.0 ± 2.1 years old; 24.9 ± 4.6 kg/m2) participated in this cross-sectional study. BAT volume, 18F-FDG uptake and mean radiodensity were assessed after 2 h of personalized (i.e. contemplating each individual's shivering threshold) cold exposure via positron emission tomography/computed tomography (PET/CT) static scanning. TSH and THs levels were determined before (thermoneutral) and 1 h after the cold exposure.

Results

Cold exposure increased circulating FT4 (P = 0.038) and reduced TSH levels (P ≤ 0.001). Conversely, the FT3 serum concentration was not modified by cold exposure (P = 0.435). No associations were found between the TSH and THs thermoneutral (all P > 0.111) or cold-induced levels (all P > 0.067) and BAT volume, 18F-FDG uptake and mean radiodensity. These findings were independent of sex and BMI.

Conclusions

Thyroid function is modulated by cold exposure, yet it is not associated with BAT volume or glucose metabolism assessed after 2 h of cold exposure in young healthy, euthyroid adults.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 880 880 48
Full Text Views 47 47 4
PDF Downloads 65 65 7
  • 1

    Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological Reviews 2004 84 277359. (https://doi.org/10.1152/physrev.00015.2003)

    • Search Google Scholar
    • Export Citation
  • 2

    Ruiz JR, Martinez-Tellez B, Sanchez-Delgado G, Osuna-Prieto FJ, Rensen PCN, Boon MR. Role of human brown fat in obesity, metabolism and cardiovascular disease: strategies to turn up the heat. Progress in Cardiovascular Diseases 2018 61 232245. (https://doi.org/10.1016/j.pcad.2018.07.002)

    • Search Google Scholar
    • Export Citation
  • 3

    Bianco AC, Silva JE. Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic funciton of brown adipose tissue. Journal of Clinical Investigation 1987 79 295300. (https://doi.org/10.1172/JCI112798)

    • Search Google Scholar
    • Export Citation
  • 4

    Santhanam P, Ahima RS, Mammen JS, Giovanella L, Treglia G. Brown Adipose Tissue (BAT) detection by 18F-FDG PET and thyroid hormone level(s)-a systematic review. Endocrine 2018 62 496500. (https://doi.org/10.1007/s12020-018-1698-x)

    • Search Google Scholar
    • Export Citation
  • 5

    Bianco AC, McAninch EA. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes and Endocrinology 2013 1 250258. (https://doi.org/10.1016/S2213-8587(13)70069-X)

    • Search Google Scholar
    • Export Citation
  • 6

    Fliers E, Kalsbeek A, Boelen A. Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. European Journal of Endocrinology 2014 171 R197R208. (https://doi.org/10.1530/EJE-14-0285)

    • Search Google Scholar
    • Export Citation
  • 7

    Hershman JM, Read DG, Bailey AL, Norman VD, Gibson TB. Effect of cold exposure on serum thyrotropin. Journal of Clinical Endocrinology and Metabolism 1970 30 430434. (https://doi.org/10.1210/jcem-30-4-430)

    • Search Google Scholar
    • Export Citation
  • 8

    Leppäluoto J, Korhonen I, Huttunen P, Hassi J. Serum levels of thyroid and adrenal hormones, testosterone, TSH, LH, GH and prolactin in men after a 2-h stay in a cold room. Acta Physiologica Scandinavica 1988 132 543548. (https://doi.org/10.1111/j.1748-1716.1988.tb08363.x)

    • Search Google Scholar
    • Export Citation
  • 9

    Hesslink RL, D’Alesandro MM, Armstrong DW, Reed HL. Human cold air habituation is independent of thyroxine and thyrotropin. Journal of Applied Physiology 1992 72 21342139. (https://doi.org/10.1152/jappl.1992.72.6.2134)

    • Search Google Scholar
    • Export Citation
  • 10

    Savourey G, Caravel JP, Barnavol B, Bittel JH. Thyroid hormone changes in a cold air environment after local cold acclimation. Journal of Applied Physiology 1994 76 19631967. (https://doi.org/10.1152/jappl.1994.76.5.1963)

    • Search Google Scholar
    • Export Citation
  • 11

    Reed HL, Burman KD, Shakir KM, O’Brian JT. Alterations in the hypothalamic-pituitary-thyroid axis after prolonged residence in Antarctica. Clinical Endocrinology 1986 25 5565. (https://doi.org/10.1111/j.1365-2265.1986.tb03595.x)

    • Search Google Scholar
    • Export Citation
  • 12

    Palinkas LA, Reed HL, Reedy KR, Do NV, Case HS, Finney NS. Circannual pattern of hypothalamic-pituitary-thyroid (HPT) function and mood during extended Antarctic residence. Psychoneuroendocrinology 2001 26 421431. (https://doi.org/10.1016/s0306-4530(00)00064-0)

    • Search Google Scholar
    • Export Citation
  • 13

    Zhang Q, Miao Q, Ye H, Zhang Z, Zuo C, Hua F, Guan Y, Li Y. The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study. Diabetes/Metabolism Research and Reviews 2014 30 513520. (https://doi.org/10.1002/dmrr.2556)

    • Search Google Scholar
    • Export Citation
  • 14

    Lahesmaa M, Orava J, Schalin-Jäntti C, Soinio M, Hannukainen JC, Noponen T, Kirjavainen A, Iida H, Kudomi N & Enerbäck S et al.Hyperthyroidism increases brown fat metabolism in humans. Journal of Clinical Endocrinology and Metabolism 2014 99 E28E35. (https://doi.org/10.1210/jc.2013-2312)

    • Search Google Scholar
    • Export Citation
  • 15

    Martinez-Tellez B, Nahon KJ, Sanchez-Delgado G, Abreu-Vieira G, Llamas-Elvira JM, Velden van FHP, Pereira Arias-Bouda LM, Rensen PCN, Boon MR, Ruiz JR. The impact of using BARCIST 1.0 criteria on quantification of BAT volume and activity in three independent cohorts of adults. Scientific Reports 2018 8 8567. (https://doi.org/10.1038/s41598-018-26878-4)

    • Search Google Scholar
    • Export Citation
  • 16

    Sanchez-Delgado G, Martinez-Tellez B, Olza J, Aguilera CM, Labayen I, Ortega FB, Chillon P, Fernandez-Reguera C, Alcantara JMA & Martinez-Avila WD et al.Activating brown adipose tissue through exercise (ACTIBATE) in young adults: Rationale, design and methodology. Contemporary Clinical Trials 2015 45 416425. (https://doi.org/10.1016/j.cct.2015.11.004)

    • Search Google Scholar
    • Export Citation
  • 17

    Martinez-Tellez B, Sanchez-Delgado G, Garcia-Rivero Y, Alcantara JMAA, Martinez-Avila WD, Muñoz-Hernandez MV, Olza J, Boon MR, Rensen PCNN & Llamas-Elvira JM et al.A new personalized cooling protocol to activate brown adipose tissue in young adults. Frontiers in Physiology 2017 8 863. (https://doi.org/10.3389/fphys.2017.00863)

    • Search Google Scholar
    • Export Citation
  • 18

    van der Lans AAJJ, Wierts R, Vosselman MJ, Schrauwen P, Brans van B, Marken Lichtenbelt WD. Cold-activated brown adipose tissue in human adults: methodological issues. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 2014 307 R103R113. (https://doi.org/10.1152/ajpregu.00021.2014)

    • Search Google Scholar
    • Export Citation
  • 19

    Laclaustra M, Moreno-Franco B, Lou-Bonafonte JM, Mateo-Gallego R, Casasnovas JA, Guallar-Castillon P, Cenarro A, Civeira F. Impaired sensitivity to thyroid hormones is associated With diabetes and metabolic syndrome. Diabetes Care 2019 42 303310. (https://doi.org/10.2337/dc18-1410)

    • Search Google Scholar
    • Export Citation
  • 20

    Sampath SC, Sampath SC, Bredella MA, Cypess AM, Torriani M. Imaging of brown adipose tissue: state of the art. Radiology 2016 280 419. (https://doi.org/10.1148/radiol.2016150390)

    • Search Google Scholar
    • Export Citation
  • 21

    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S & Schmid B et al.Fiji: an open-source platform for biological-image analysis. Nature Methods 2012 9 676682. (https://doi.org/10.1038/nmeth.2019)

    • Search Google Scholar
    • Export Citation
  • 22

    Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA, Enerbäck S, Kinahan PE, Lichtenbelt WvM & Lin FI et al.Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metabolism 2016 24 210222. (https://doi.org/10.1016/j.cmet.2016.07.014)

    • Search Google Scholar
    • Export Citation
  • 23

    Laurberg P, Andersen S, Karmisholt J. Cold adaptation and thyroid hormone metabolism = Hormon- und Stoffwechselforschung = Hormones et metabolisme. Hormone and Metabolic Research 2005 37 545549. (https://doi.org/10.1055/s-2005-870420)

    • Search Google Scholar
    • Export Citation
  • 24

    Silva JE The thermogenic effect of thyroid hormone and its clinical implications. Annals of Internal Medicine 2003 139 205213. (https://doi.org/10.7326/0003-4819-139-3-200308050-00010)

    • Search Google Scholar
    • Export Citation
  • 25

    Sanchez-Delgado G, Martinez-Tellez B, Garcia-Rivero Y, Alcantara JMA, Acosta FM, Amaro-Gahete FJ, Llamas-Elvira JM, Ruiz JR. Brown adipose tissue and skeletal muscle 18F-FDG activity after a personalized cold exposure is not associated with cold-induced thermogenesis and nutrient oxidation rates in young healthy adults. Frontiers in Physiology 2018 9 1577. (https://doi.org/10.3389/fphys.2018.01577)

    • Search Google Scholar
    • Export Citation
  • 26

    de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW, Harney JW, Larsen PR, Bianco AC. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. Journal of Clinical Investigation 2001 108 13791385. (https://doi.org/10.1172/JCI13803)

    • Search Google Scholar
    • Export Citation
  • 27

    Zoeller RT, Kabeer N, Albers HE. Cold exposure elevates cellular levels of messenger ribonucleic acid encoding thyrotropin-releasing hormone in paraventricular nucleus despite elevated levels of thyroid hormones. Endocrinology 1990 127 29552962. (https://doi.org/10.1210/endo-127-6-2955)

    • Search Google Scholar
    • Export Citation
  • 28

    Spek van der AH, Fliers E, Boelen A. The classic pathways of thyroid hormone metabolism. Molecular and Cellular Endocrinology 2017 458 2938. (https://doi.org/10.1016/j.mce.2017.01.025)

    • Search Google Scholar
    • Export Citation
  • 29

    Endo T, Kobayashi T. Thyroid-stimulating hormone receptor in brown adipose tissue is involved in the regulation of thermogenesis. American Journal of Physiology-Endocrinology and Metabolism 2008 295 E514E518. (https://doi.org/10.1152/ajpendo.90433.2008)

    • Search Google Scholar
    • Export Citation
  • 30

    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH & Doria A et al.Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine 2009 360 15091517. (https://doi.org/10.1056/NEJMoa0810780)

    • Search Google Scholar
    • Export Citation
  • 31

    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ & Enerbäck S et al.Functional brown adipose tissue in healthy adults. New England Journal of Medicine 2009 360 15181525. (https://doi.org/10.1056/NEJMoa0808949)

    • Search Google Scholar
    • Export Citation
  • 32

    Gavaldà-Navarro A, Villarroya J, Cereijo R, Giralt M, Villarroya F. The endocrine role of brown adipose tissue: an update on actors and actions. Reviews in Endocrine and Metabolic Disorders 2021 In press. (https://doi.org/10.1007/s11154-021-09640-6)

    • Search Google Scholar
    • Export Citation
  • 33

    Hanssen MJW, Broeders E, Samms RJ, Vosselman MJ, Lans van der AAJJ, Cheng CC, Adams AC, Marken Lichtenbelt van WD, Schrauwen P. Serum FGF21 levels are associated with brown adipose tissue activity in humans. Scientific Reports 2015 5 10275. (https://doi.org/10.1038/srep10275)

    • Search Google Scholar
    • Export Citation
  • 34

    Pinckard KM, Shettigar VK, Wright KR, Abay E, Baer LA, Vidal P, Dewal RS, Das D, Duarte-Sanmiguel S & Hernández-Saavedra D et al.A novel endocrine role for the BAT-released lipokine 12,13-diHOME to mediate cardiac function. Circulation 2021 143 145159. (https://doi.org/10.1161/CIRCULATIONAHA.120.049813)

    • Search Google Scholar
    • Export Citation
  • 35

    Chen Y, Buyel JJ, Hanssen MJW, Siegel F, Pan R, Naumann J, Schell M, Lans van der A, Schlein C & Froehlich H et al.Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nature Communications 2016 7 11420. (https://doi.org/10.1038/ncomms11420)

    • Search Google Scholar
    • Export Citation
  • 36

    Sun L, Goh HJ, Govindharajulu P, Sun L, Henry CJ, Leow MKS. A feedforward loop within the thyroid-brown fat axis facilitates thermoregulation. Scientific Reports 2020 10 9661. (https://doi.org/10.1038/s41598-020-66697-0)

    • Search Google Scholar
    • Export Citation
  • 37

    Iwen KA, Schröder E, Brabant G. Thyroid hormones and the metabolic syndrome. European Thyroid Journal 2013 2 8392. (https://doi.org/10.1159/000351249)

    • Search Google Scholar
    • Export Citation
  • 38

    Fox CS, Pencina MJ, D’Agostino RB, Murabito JM, Seely EW, Pearce EN, Vasan RS. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample. Archives of Internal Medicine 2008 168 587592 (https://doi.org/10.1001/archinte.168.6.587)

    • Search Google Scholar
    • Export Citation
  • 39

    Kim B Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 2008 18 141144. (https://doi.org/10.1089/thy.2007.0266)

    • Search Google Scholar
    • Export Citation
  • 40

    Blondin DP, Labbé SM, Phoenix S, Guérin B, Turcotte ÉE, Richard D, Carpentier AC, Haman F. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. Journal of Physiology 2015 593 701714 (https://doi.org/10.1113/jphysiol.2014.283598)

    • Search Google Scholar
    • Export Citation
  • 41

    Maushart CI, Loeliger R, Gashi G, Christ-Crain M, Betz MJ. Resolution of hypothyroidism restores cold-induced thermogenesis in humans. Thyroid: Official Journal of the American Thyroid Association 2019 29 493501. (https://doi.org/10.1089/thy.2018.0436)

    • Search Google Scholar
    • Export Citation
  • 42

    Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology: Endocrinology and Metabolism 2007 293 E444E452. (https://doi.org/10.1152/ajpendo.00691.2006)

    • Search Google Scholar
    • Export Citation
  • 43

    Schilperoort M, Hoeke G, Kooijman S, Rensen PCN. Relevance of lipid metabolism for brown fat visualization and quantification. Current Opinion in Lipidology 2016 27 242248. (https://doi.org/10.1097/MOL.0000000000000296)

    • Search Google Scholar
    • Export Citation
  • 44

    Din M, Raiko J, Saari T, Kudomi N, Tolvanen T, Oikonen V, Teuho J, Sipilä HT, Savisto N & Parkkola R et al.Human brown adipose tissue [(15)O]O2 PET imaging in the presence and absence of cold stimulus. European Journal of Nuclear Medicine and Molecular Imaging 2016 43 18781886. (https://doi.org/10.1007/s00259-016-3364-y)

    • Search Google Scholar
    • Export Citation
  • 45

    Russell W, Harrison RF, Smith N, Darzy K, Shalet S, Weetman AP, Ross RJ. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. Journal of Clinical Endocrinology and Metabolism 2008 93 23002306. (https://doi.org/10.1210/jc.2007-2674)

    • Search Google Scholar
    • Export Citation