Overexpression of miR-7977 in CD4+ T cells is associated with multiplex autoimmunity in patients with Addison’s disease

in European Journal of Endocrinology
View More View Less
  • 1 Department of Endocrinology, Metabolism and Internal Medicine, Poznań University of Medical Sciences, Poznań, Poland
  • 2 Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
  • 3 Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland

Correspondence should be addressed to M Fichna; Email: mfichna@ump.edu.pl

*(M Fichna and M Żurawek contributed equally to this work)

Restricted access

Objective

Autoimmune Addison’s disease (AD) results from a combination of the genetic predisposition, unclear environmental triggers and ensuing immune dysfunction. MicroRNA molecules (miRNAs) are involved in post-transcriptional regulation of numerous target genes, hence may affect the immune function and promote autoimmunity. A deregulated miRNAs profile was reported in several autoimmune conditions. Our study was aimed at a global analysis of miRNA expression in CD4+ T cells from patients with AD.

Methods

CD4+ T cells were separated from peripheral blood, total RNA enriched in miRNAs extracted, and miRNA expression determined by small RNA sequencing. Global miRNA was investigated in 11 AD subjects and 9 age-matched healthy controls, with subsequent validation of the differentially expressed miRNAs by RT-qPCR in 29 patients and 28 controls.

Results

The analysis revealed upregulation of 9 miRNAs and downregulation of miR-509-3p in CD4+ T cells from patients with AD (cut-off fold change (FC) >2, Benjamini–Hochberg P  < 0.05). RT-qPCR validation confirmed overexpression of miR-7977 (P < 0.0001, FC = 2.7), miR-374a-5p and miR-1260b (P < 0.05, FC = 1.3 and 1.2, respectively). miR-7977 was upregulated in patients with coexisting autoimmune conditions vs those with isolated AD (P = 0.005, mean FC = 2.2). Moreover, miR-7977 abundance appeared correlated with the number of autoimmune comorbidities (P <0.0001, r = 0.736) and serum autoantibodies against thyroid peroxidase (P < 0.001, r = 0.588).

Conclusions

Our study demonstrates upregulated expression of miR-7977 in CD4+ T cells from patients with AD, especially with its polyendocrine form. Further analyses are warranted to replicate our results, establish the marker utility of miR-7977, and elucidate its functional role in autoimmunity.

Supplementary Materials

    • Table S1. miRNAs which displayed significantly different expression level in CD4+ T cells from patients with Addison&#x2019;s disease compared to healthy controls (P<0.05). P value corrected with Benjamini-Hochberg test; FC, Fold change
    • Supplementary Figure S1. miR-7977 target prediction and enrichment analysis of the target genes. Venn&#x2019;s diagram of target genes predicted by TargetScan7.2, miRWalk3.0 and miRBD analysis tools (A). Annotation of target genes to autoimmunity-related genes presented in Gene Entrez database (B). Functional classification of target genes by Gene Ontology enrichment analysis (C)

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 144 144 144
Full Text Views 12 12 12
PDF Downloads 18 18 18
  • 1

    Hahner S Acute adrenal crisis and mortality in adrenal insufficiency: still a concern in 2018! Annales d’Endocrinologie 2018 79 164166. (https://doi.org/10.1016/j.ando.2018.04.015)

    • Search Google Scholar
    • Export Citation
  • 2

    Fichna M, Fichna P, Gryczyńska M, Walkowiak J, Żurawek M & Sowiński J Screening for associated autoimmune disorders in Polish patients with Addison’s disease. Endocrine 2010 37 349360. (https://doi.org/10.1007/s12020-010-9312-x)

    • Search Google Scholar
    • Export Citation
  • 3

    Betterle C, Scarpa R, Garelli S, Morlin L, Lazzarotto F, Presotto F, Coco G, Masiero S, Parolo A & Albergoni MP et al. Addison’s disease: a survey on 633 patients in Padova. European Journal of Endocrinology 2013 169 773784. (https://doi.org/10.1530/EJE-13-0528)

    • Search Google Scholar
    • Export Citation
  • 4

    Husebye ES, Anderson MS & Kampe O Autoimmune polyendocrine syndromes. New England Journal of Medicine 2018 378 11321141. (https://doi.org/10.1056/NEJMra1713301)

    • Search Google Scholar
    • Export Citation
  • 5

    Mitchell AL, Macarthur KD, Gan EH, Baggott LE, Wolff AS, Skinningsrud B, Platt H, Short A, Lobell A & Kampe O et al. Association of autoimmune Addison’s disease with alleles of STAT4 and GATA3 in European cohorts. PLoS ONE 2014 9 e88991. (https://doi.org/10.1371/journal.pone.0088991)

    • Search Google Scholar
    • Export Citation
  • 6

    Hellesen A, Edvardsen K, Breivik L, Husebye ES & Bratland E The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison’s disease. Clinical and Experimental Immunology 2014 176 351362. (https://doi.org/10.1111/cei.12291)

    • Search Google Scholar
    • Export Citation
  • 7

    Weinstock C, Matheis N, Barkia S, Haager MC, Janson A, Markovic A, Bux J & Kahaly GJ Autoimmune polyglandular syndrome type 2 shows the same HLA class II pattern as type 1 diabetes. Tissue Antigens 2011 77 317324. (https://doi.org/10.1111/j.1399-0039.2011.01634.x)

    • Search Google Scholar
    • Export Citation
  • 8

    Zhernakova A, Withoff S & Wijmenga C Clinical implications of shared genetics and pathogenesis in autoimmune diseases. Nature Reviews: Endocrinology 2013 9 646659. (https://doi.org/10.1038/nrendo.2013.161)

    • Search Google Scholar
    • Export Citation
  • 9

    Frommer L, Kahaly GJ. Type 1 diabetes and autoimmune thyroid disease-the genetic link. Frontiers in Endocrinology 2021 12 618213. (https://doi.org/10.3389/fendo.2021.618213)

    • Search Google Scholar
    • Export Citation
  • 10

    Eriksson D, Bianchi M, Landegren N, Nordin J, Dalin F, Mathioudaki A, Eriksson GN, Hultin-Rosenberg L, Dahlqvist J & Zetterqvist H et al. Extended exome sequencing identifies BACH2 as a novel major risk locus for Addison’s disease. Journal of Internal Medicine 2016 280 595608. (https://doi.org/10.1111/joim.12569)

    • Search Google Scholar
    • Export Citation
  • 11

    Meyer G, Neumann K, Badenhoop K & Linder R Increasing prevalence of Addison’s disease in German females: health insurance data 2008–2012. European Journal of Endocrinology 2014 170 367373. (https://doi.org/10.1530/EJE-13-0756)

    • Search Google Scholar
    • Export Citation
  • 12

    Song H, Fang F, Tomasson G, Arnberg FK, Mataix-Cols D, Fernandez dela Cruz L, Almqvist C, Fall K & Valdimarsdottir UA Association of stress-related disorders With subsequent autoimmune disease. JAMA 2018 319 23882400. (https://doi.org/10.1001/jama.2018.7028)

    • Search Google Scholar
    • Export Citation
  • 13

    Penna-Martinez M, Meyer G, Boe Wolff A, Skinningsrud B, Betterle C, Falorni A, Ollier W, Undlien D, Husebye E & Pearce S et al. Vitamin D status and pathway genes in five European autoimmune Addison’s disease cohorts. European Journal of Endocrinology 2021 184 377385. (https://doi.org/10.1530/EJE-20-0956)

    • Search Google Scholar
    • Export Citation
  • 14

    Zhang L, Wu H, Zhao M, Chang C & Lu Q Clinical significance of miRNAs in autoimmunity. Journal of Autoimmunity 2020 109 102438. (https://doi.org/10.1016/j.jaut.2020.102438)

    • Search Google Scholar
    • Export Citation
  • 15

    Bartel DP MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004 116 281297. (https://doi.org/10.1016/s0092-8674(0400045-5)

    • Search Google Scholar
    • Export Citation
  • 16

    Lewis BP, Burge CB & Bartel DP Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005 120 1520. (https://doi.org/10.1016/j.cell.2004.12.035)

    • Search Google Scholar
    • Export Citation
  • 17

    Podshivalova K, Salomon DR. MicroRNA regulation of T-lymphocyte immunity: modulation of molecular networks responsible for T-cell activation, differentiation, and development. Critical Reviews in Immunology 2013 33 435476. (https://doi.org/10.1615/critrevimmunol.2013006858)

    • Search Google Scholar
    • Export Citation
  • 18

    Amado T, Schmolka N, Metwally H, Silva-Santos B & Gomes AQ Cross-regulation between cytokine and microRNA pathways in T cells. European Journal of Immunology 2015 45 15841595. (https://doi.org/10.1002/eji.201545487)

    • Search Google Scholar
    • Export Citation
  • 19

    Bernecker C, Halim F, Lenz L, Haase M, Nguyen T, Ehlers M, Vordenbaeumen S & Schott M MicroRNA expressions in CD4+ and CD8+ T-cell subsets in autoimmune thyroid diseases. Experimental and Clinical Endocrinology and Diabetes 2014 122 107112. (https://doi.org/10.1055/s-0033-1361088)

    • Search Google Scholar
    • Export Citation
  • 20

    Yamada H, Itoh M, Hiratsuka I & Hashimoto S Circulating microRNAs in autoimmune thyroid diseases. Clinical Endocrinology 2014 81 276281. (https://doi.org/10.1111/cen.12432)

    • Search Google Scholar
    • Export Citation
  • 21

    Martinez-Hernandez R, Sampedro-Nunez M, Serrano-Somavilla A, Ramos-Levi AM, de la Fuente H, Trivino JC, Sanz-Garcia A, Sanchez-Madrid F & Marazuela M A microRNA signature for evaluation of risk and severity of autoimmune thyroid diseases. Journal of Clinical Endocrinology and Metabolism 2018 103 11391150. (https://doi.org/10.1210/jc.2017-02318)

    • Search Google Scholar
    • Export Citation
  • 22

    Otsu H, Watanabe M, Inoue N, Masutani R & Iwatani Y Intraindividual variation of microRNA expression levels in plasma and peripheral blood mononuclear cells and the associations of these levels with the pathogenesis of autoimmune thyroid diseases. Clinical Chemistry and Laboratory Medicine 2017 55 626635. (https://doi.org/10.1515/cclm-2016-0449)

    • Search Google Scholar
    • Export Citation
  • 23

    Wang G, Gu Y, Xu N, Zhang M & Yang T Decreased expression of miR-150, miR146a and miR424 in Type 1 diabetic patients: association with ongoing islet autoimmunity. Biochemical and Biophysical Research Communications 2018 498 382387. (https://doi.org/10.1016/j.bbrc.2017.06.196)

    • Search Google Scholar
    • Export Citation
  • 24

    Nielsen LB, Wang C, Sorensen K, Bang-Berthelsen CH, Hansen L, Andersen MLM, Hougaard P, Juul A, Zhang CY & Pociot F et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Experimental Diabetes Research 2012 2012 896362. (https://doi.org/10.1155/2012/896362)

    • Search Google Scholar
    • Export Citation
  • 25

    Takahashi P, Xavier DJ, Evangelista AF, Manoel-Caetano FS, Macedo C, Collares CVA, Foss-Fretas MC, Foss MC, Rassi DM & Donadi EA et al. MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene 2014 539 213223. (https://doi.org/10.1016/j.gene.2014.01.075)

    • Search Google Scholar
    • Export Citation
  • 26

    Zurawek M, Dzikiewicz-Krawczyk A, Iżykowska K, Ziólkowska-Suchanek I, Skowronska B, Czainska M, Podralska M, Fichna P, Przybylski G & Fichna M et al. miR-487a-3p upregulated in Type 1 diabetes targets CTLA4 and FOXO3. Diabetes Research and Clinical Practice 2018 142 146153. (https://doi.org/10.1016/j.diabres.2018.05.044)

    • Search Google Scholar
    • Export Citation
  • 27

    Bernecker C, Halim F, Haase M, Willenberg HS, Ehlers M & Schott M MicroRNA expressions in PMBCs, CD4+, and CD8+ T-cells from patients suffering from autoimmune Addison’s disease. Hormone and Metabolic Research 2013 45 599604. (https://doi.org/10.1055/s-0033-1341511)

    • Search Google Scholar
    • Export Citation
  • 28

    Husebye ES, Allolio B, Arlt W, Badenhoop K, Bensing S, Betterle C, Falorni A, Gan EH, Hulting AL & Kasperlik-Zaluska A et al. Consensus statement on the diagnosis, treatment and follow-up of patients with primary adrenal insufficiency. Journal of Internal Medicine 2014 275 104115. (https://doi.org/10.1111/joim.12162)

    • Search Google Scholar
    • Export Citation
  • 29

    Fehlmann T, Reinheimer S, Geng C, Su X, Drmanac S, Alexeev A, Zhang C, Backes C, Ludwig N & Hart M et al. cPAS-based sequencing on the BGISEQ-500 to explore small non-coding RNAs. Clinical Epigenetics 2016 8 123. (https://doi.org/10.1186/s13148-016-0287-1)

    • Search Google Scholar
    • Export Citation
  • 30

    Friedländer MR, Mackowiak SD, Li N, Chen W & Rajewsky N miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research 2012 40 3752. (https://doi.org/10.1093/nar/gkr688)

    • Search Google Scholar
    • Export Citation
  • 31

    Robinson MD, McCarthy DJ & Smyth GK edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010 26 139140. (https://doi.org/10.1093/bioinformatics/btp616)

    • Search Google Scholar
    • Export Citation
  • 32

    Riffo-Campos ÁL, Riquelme I & Brebi-Mieville P Tools for sequence-based miRNA target prediction: what to choose? International Journal of Molecular Sciences 2016 17 1987. (https://doi.org/10.3390/ijms17121987)

    • Search Google Scholar
    • Export Citation
  • 33

    Lee YJ, Kim V, Muth DC & Witwer KW Validated microRNA target databases: an evaluation. Drug Development Research 2015 76 389396. (https://doi.org/10.1002/ddr.21278)

    • Search Google Scholar
    • Export Citation
  • 34

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods 2007 39 175191. (https://doi.org/10.3758/bf03193146)

    • Search Google Scholar
    • Export Citation
  • 35

    Selmaj I, Cichalewska M, Namiecinska M, Galazka G, Horzelski W, Selmaj KW & Mycko MP Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Annals of Neurology 2017 81 703717. (https://doi.org/10.1002/ana.24931)

    • Search Google Scholar
    • Export Citation
  • 36

    Ebrahimkhani S, Vafaee F, Young PE, Hur SSJ, Hawke S, Devenney E, Beadnall H, Barnett MH, Suter CM & Buckland ME Exosomal microRNA signatures in multiple sclerosis reflect disease status. Scientific Reports 2017 7 14293. (https://doi.org/10.1038/s41598-017-14301-3)

    • Search Google Scholar
    • Export Citation
  • 37

    Doumatey AP, He WJ, Gaye A, Lei L, Zhou J, Gibbons GH, Adeyemo A & Rotimi CN Circulating MiR-374a-5p is a potential modulator of the inflammatory process in obesity. Scientific Reports 2018 8 7680. (https://doi.org/10.1038/s41598-018-26065-5)

    • Search Google Scholar
    • Export Citation
  • 38

    Navarro-Quiroz E, Pacheco-Lugo L, Navarro-Quiroz R, Lorenzi H, España-Puccini P, Díaz-Olmos Y, Almendrales L, Olave V, Gonzalez-Torres H & Diaz-Perez A et al. Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis. PLoS ONE 2017 12 e0187973. (https://doi.org/10.1371/journal.pone.0187973)

    • Search Google Scholar
    • Export Citation
  • 39

    Ali SA, Gandhi R, Potla P, Keshavarzi S, Espin-Garcia O, Shestopaloff K, Pastrello C, Bethune-Waddell D, Lively S & Perruccio AV et al. Sequencing identifies a distinct signature of circulating microRNAs in early radiographic knee osteoarthritis. Osteoarthritis and Cartilage 2020 28 14711481. (https://doi.org/10.1016/j.joca.2020.07.003)

    • Search Google Scholar
    • Export Citation
  • 40

    Van Keuren-Jensen KR, Malenica I, Courtright AL, Ghaffari LT, Starr AP, Metpally RP, Beecroft TA, Carlson EWJ, Kiefer JA & Pockros PJ et al. MicroRNA changes in liver tissue associated with fibrosis progression in patients with hepatitis C. Liver International 2016 36 334343. (https://doi.org/10.1111/liv.12919)

    • Search Google Scholar
    • Export Citation
  • 41

    Kaur H, Sehgal R, Kumar A, Sehgal A, Bansal D & Sultan AA Screening and identification of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria. Journal of Translational Medicine 2018 16 272. (https://doi.org/10.1186/s12967-018-1646-9)

    • Search Google Scholar
    • Export Citation
  • 42

    Yang M, Ye L, Wang B, Gao J, Liu R, Hong J, Wang W, Gu W & Ning G Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. Journal of Diabetes 2015 7 158165. (https://doi.org/10.1111/1753-0407.12163)

    • Search Google Scholar
    • Export Citation
  • 43

    Malachowska B, Wyka K, Nowicka Z, Bartlomiejczyk MA, Mlynarski W & Fendler W Temporal dynamics of serum let-7g expression mirror the decline of residual beta-cell function in longitudinal observation of children with type 1 diabetes. Pediatric Diabetes 2018 19 14071415. (https://doi.org/10.1111/pedi.12783)

    • Search Google Scholar
    • Export Citation
  • 44

    Assmann TS, Recamonde-Mendoza M, De Souza BM & Crispim D MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocrine Connections 2017 6 773790. (https://doi.org/10.1530/EC-17-0248)

    • Search Google Scholar
    • Export Citation
  • 45

    Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annual Review of Immunology 2001 19 225252. (https://doi.org/10.1146/annurev.immunol.19.1.225)

    • Search Google Scholar
    • Export Citation
  • 46

    Trzupek D, Dunstan M, Cutler AJ, Lee M, Godfrey L, Jarvis L, Rainbow DB, Aschenbrenner D, Jones JL & Uhlig HH et al. Discovery of CD80 and CD86 as recent activation markers on regulatory T cells by protein-RNA single-cell analysis. Genome Medicine 2020 12 55. (https://doi.org/10.1186/s13073-020-00756-z)

    • Search Google Scholar
    • Export Citation
  • 47

    Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR & Lorenz HM Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. Journal of Experimental Medicine 2004 199 12851291. (https://doi.org/10.1084/jem.20032158)

    • Search Google Scholar
    • Export Citation