Characteristics of benign adrenocortical adenomas with 18F-FDG PET accumulation

in European Journal of Endocrinology
View More View Less
  • 1 Department of Endocrinology, Hematology and Gerontology
  • 2 Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
  • 3 Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
  • 4 Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan

Correspondence should be addressed to S Suzuki Email sawakosuzuki@chiba-u.jp
Restricted access

Introduction

Although 18F-FDG PET was originally developed to evaluate benign and malignant tumors, the frequency of detection of benign adrenocortical adenomas showing FDG-PET accumulation has increased. However, the details of FDG-PET-accumulated benign adrenocortical adenomas have not been elucidated.

Methods

To elucidate the pathophysiology of FDG-PET-positive cortisol-producing adrenal tumors, we performed clinicopathological and genetic analyses of adrenocortical adenomas examing FDG-PET in 30 operated patients with unilateral cortisol-producing adrenal tumors (26 adrenal adenomas and 4 adrenal cancers).

Results

All adrenocortical carcinomas and 17/26 (65%) benign adrenocortical adenomas showed high FDG accumulation (SUVmax ≥ 3). In adrenocortical adenomas with high FDG accumulation (SUVmax ≥ 3), SUVmax showed a positive correlation with the CT Hounsfield units. A higher SUVmax showed a clear black adenoma appearance with predominantly compact cells, which exhibited high T1 and T2 signals, a lack of signal drop on out-of-phase imaging on MRI, and less accumulation on 131-I adsterol scintigraphy. Furthermore, RNA-sequencing analysis revealed significant increases in the lysosomal and autophagy pathways and metabolic pathways, including glycolysis through glucose transporter (GLUT) 1 and 3, in black adenomas with high-level FDG accumulation.

Discussion

A black adenoma is blackish due to lipofuscin, which accumulates as a result of damaged mitochondria or proteins that escape lysosomal degradation or autophagy. Since FDG in PET is taken up via GLUTs, alteration of the intracellular metabolic dynamics associated with mitochondrial damage in black adenomas may increase PET accumulation.

Conclusion

Black adrenal adenomas should be considered with adrenal tumors showing PET accumulation and low lipid contents.

Supplementary Materials

    • Supplementary Figure 1
    • Supplementary Table 1. Top 10 GO biological processes increased in high-SUVmax (high_nonblack and high_black) compared to low-SUVmax (low_nonblack).
    • Supplementary Table 2. Top 10 KEGG pathways increased in high-SUVmax (high_nonblack and high_black) compared to low-SUVmax (low_nonblack).
    • Supplementary Table 3. Top 10 GO biological processes increased in high_black compared to high_nonblack.
    • Supplementary Table 4. Top 15 KEGG pathways increased in high_black compared to high_nonblack.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 120 120 120
Full Text Views 22 22 22
PDF Downloads 29 29 29
  • 1

    Naji M, Hodolic M, El-Refai S, Khan S, Marzola MC, Rubello D & Al-Nahhas A Endocrine tumors: the evolving role of positron emission tomography in diagnosis and management. Journal of Endocrinological Investigation 2010 33 5460. (https://doi.org/10.1007/BF03346550)

    • Search Google Scholar
    • Export Citation
  • 2

    Metser U, Miller E, Lerman H, Lievshitz G, Avital S & Even-Sapir E 18F-FDG PET/CT in the evaluation of adrenal masses. Journal of Nuclear Medicine 2006 47 3237.

    • Search Google Scholar
    • Export Citation
  • 3

    Groussin L, Bonardel G, Silvéra S, Tissier F, Coste J, Abiven G, Libé R, Bienvenu M, Alberini JL & Salenave S et al. 18F-fluorodeoxyglucose positron emission tomography for the diagnosis of adrenocortical tumors: a prospective study in 77 operated patients. Journal of Clinical Endocrinology and Metabolism 2009 94 17131722. (https://doi.org/10.1210/jc.2008-2302)

    • Search Google Scholar
    • Export Citation
  • 4

    Ulaner GA Chapter 15 – Adrenal glands on FDG PET/CT. In Fundamentals of Oncologic PET/CT, pp. 143150. Ed Ulaner GANetherland: Elsevier, 2019. (https://doi.org/10.1016/B978-0-323-56869-2.00015-6)

    • Search Google Scholar
    • Export Citation
  • 5

    Chong S, Lee KS, Kim HY, Kim YK, Kim BT, Chung MJ, Yi CA & Kwon GY Integrated PET-CT for the characterization of adrenal gland lesions in cancer patients: diagnostic efficacy and interpretation pitfalls. RadioGraphics 2006 26 18111824; discussion 18241816. (https://doi.org/10.1148/rg.266065057)

    • Search Google Scholar
    • Export Citation
  • 6

    Patel D, Gara SK, Ellis RJ, Boufraqech M, Nilubol N, Millo C, Stratakis CA & Kebebew E FDG PET/CT scan and functional adrenal tumors: a pilot study for lateralization. World Journal of Surgery 2016 40 683689. (https://doi.org/10.1007/s00268-015-3242-y)

    • Search Google Scholar
    • Export Citation
  • 7

    Akkuş G, Güney IB, Ok F, Evran M, Izol V, Erdoğan Ş, Bayazıt Y, Sert M & Tetiker T Diagnostic efficacy of 18F-FDG PET/CT in patients with adrenal incidentaloma. Endocrine Connections 2019 8 838845. (https://doi.org/10.1530/EC-19-0204)

    • Search Google Scholar
    • Export Citation
  • 8

    Newell-Price J, Bertagna X, Grossman AB & Nieman LK Cushing’s syndrome. Lancet 2006 367 16051617. (https://doi.org/10.1016/S0140-6736(0668699-6)

    • Search Google Scholar
    • Export Citation
  • 9

    Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, Fava GA, Findling JW, Gaillard RC & Grossman AB et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. Journal of Clinical Endocrinology and Metabolism 2003 88 55935602. (https://doi.org/10.1210/jc.2003-030871)

    • Search Google Scholar
    • Export Citation
  • 10

    Weiss LM Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. American Journal of Surgical Pathology 1984 8 163169. (https://doi.org/10.1097/00000478-198403000-00001)

    • Search Google Scholar
    • Export Citation
  • 11

    De Leo A, Mosconi C, Zavatta G, Tucci L, Nanni C, Selva S, Balacchi C, Ceccarelli C, Santini D & Pantaleo MA et al. Radiologically defined lipid-poor adrenal adenomas: histopathological characteristics. Journal of Endocrinological Investigation 2020 43 11971204. (https://doi.org/10.1007/s40618-020-01198-5)

    • Search Google Scholar
    • Export Citation
  • 12

    Kanai A, Suzuki K, Tanimoto K, Mizushima-Sugano J, Suzuki Y & Sugano S Characterization of STAT6 target genes in human B cells and lung epithelial cells. DNA Research 2011 18 379392. (https://doi.org/10.1093/dnares/dsr025)

    • Search Google Scholar
    • Export Citation
  • 13

    Hasegawa Y, Ikeno M, Suzuki N, Nakayama M & Ohara O Improving the efficiency of gene insertion in a human artificial chromosome vector and its transfer in human-induced pluripotent stem cells. Biology Methods and Protocols 2018 3 bpy013. (https://doi.org/10.1093/biomethods/bpy013)

    • Search Google Scholar
    • Export Citation
  • 14

    Ge SX, Son EW & Yao R iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 2018 19 534. (https://doi.org/10.1186/s12859-018-2486-6)

    • Search Google Scholar
    • Export Citation
  • 15

    Yu H, Zhang P, Chen YR, Wang YJ, Lin XY, Li XY & Chen G Temporal changes of spinal transcriptomic profiles in mice with spinal nerve ligation. Frontiers in Neuroscience 2019 13 1357. (https://doi.org/10.3389/fnins.2019.01357)

    • Search Google Scholar
    • Export Citation
  • 16

    Furge K, Dykema K. PGSEA: Parametric Gene Set Enrichment Analysis. R package version 1480; 2012 1. (available at: https://rdrr.io/bioc/PGSEA/)

    • Search Google Scholar
    • Export Citation
  • 17

    Kim SY, Volsky DJ. PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 2005 6 144. (https://doi.org/10.1186/1471-2105-6-144)

    • Search Google Scholar
    • Export Citation
  • 18

    Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013 29 18301831. (https://doi.org/10.1093/bioinformatics/btt285)

    • Search Google Scholar
    • Export Citation
  • 19

    Baker MR A pigmented adenoma of the adrenal. Archives of Pathology 1938 26 845852.

  • 20

    Komiya I, Takasu N, Aizawa T, Yamada T, Koizumi Y, Hashizume K, Ishihara M, Hiramatsu K, Ichikawa K & Katakura M Black (or brown) adrenal cortical adenoma: its characteristic features on computed tomography and endocrine data. Journal of Clinical Endocrinology and Metabolism 1985 61 711717. (https://doi.org/10.1210/jcem-61-4-711)

    • Search Google Scholar
    • Export Citation
  • 21

    Reschini E, Baldini M & Cantalamessa L A black adrenocortical adenoma causing Cushing’s syndrome not imaged by radiocholesterol scintigraphy. European Journal of Nuclear Medicine 1990 17 185187. (https://doi.org/10.1007/BF00811448)

    • Search Google Scholar
    • Export Citation
  • 22

    Kameyama K, Takami H. Pigmented granules in functional black adenoma of the adrenal gland: a histochemical and ultrastructural study. Endocrine Pathology 1999 10 353357. (https://doi.org/10.1007/BF02739778)

    • Search Google Scholar
    • Export Citation
  • 23

    Dixon RM, Lieberman LM, Gould HR & Hafez GR Iodocholesterol scintiscan and a rare ‘functional’ black adenoma of the adrenal cortex. Journal of Nuclear Medicine 1983 24 505507.

    • Search Google Scholar
    • Export Citation
  • 24

    Nomura K, Saito H, Aiba M, Iihara M, Obara T & Takano K Cushing’s syndrome due to bilateral adrenocortical adenomas with unique histological features. Endocrine Journal 2003 50 155162. (https://doi.org/10.1507/endocrj.50.155)

    • Search Google Scholar
    • Export Citation
  • 25

    Ambrosi B, Colombo P & Faglia G Cushing’s syndrome due to a black adenoma of the adrenal gland: lack of tumour visualization by radiocholesterol scintigraphy. European Journal of Nuclear Medicine 1994 21 13671368. (https://doi.org/10.1007/BF02426703)

    • Search Google Scholar
    • Export Citation
  • 26

    Okura T, Miyoshi K, Watanabe S, Kurata M, Irita J, Manabe S, Fukuoka T, Higaki J & Sasano H Coexistence of three distinct adrenal tumors in the same adrenal gland in a patient with primary aldosteronism and preclinical Cushing’s syndrome. Clinical and Experimental Nephrology 2006 10 127130. (https://doi.org/10.1007/s10157-006-0413-z)

    • Search Google Scholar
    • Export Citation
  • 27

    Inomoto C, Sato H, Kanai G, Hirukawa T, Shoji S, Terachi T, Kajiwara H & Osamura RY Black adrenal adenoma causing preclinical Cushing’s syndrome. Tokai Journal of Experimental and Clinical Medicine 2010 35 5761. (PMID:21319027)

    • Search Google Scholar
    • Export Citation
  • 28

    Tokunagaa H, Miyamura N, Sasaki K, Yoshizato K, Itasaka M, Nakamaru K, Suefuji M, Kawashima J, Matsumoto K & Sasano H et al. Preclinical Cushing’s syndrome resulting from black adrenal adenoma: a case report. Hormone Research 2004 62 6066. (https://doi.org/10.1159/000079120)

    • Search Google Scholar
    • Export Citation
  • 29

    Ichiyanagi O, Sasagawa I, Izumi T, Ohji H, Suzuki H, Nakada T, Sugai Y & Yamaguchi K Relationship between clear cell/compact cell ratio and computed tomographic attenuation number in adrenocortical adenoma. International Urology and Nephrology 1999 31 585590. (https://doi.org/10.1023/a:1007144118399)

    • Search Google Scholar
    • Export Citation
  • 30

    Yamada T, Ishibashi T, Saito H, Matsuhashi T, Majima K, Tsuda M, Takahashi S & Moriya T Adrenal adenomas: relationship between histologic lipid-rich cells and CT attenuation number. European Journal of Radiology 2003 48 198202. (https://doi.org/10.1016/S0720-048X(0200217-6)

    • Search Google Scholar
    • Export Citation
  • 31

    Prince EA, Yoo DC, DeLellis RA & Mayo-Smith WW CT and PET appearance of a pigmented ‘black’ adrenal adenoma in a patient with lung cancer. Clinical Radiology 2007 62 12291231. (https://doi.org/10.1016/j.crad.2007.04.022)

    • Search Google Scholar
    • Export Citation
  • 32

    Blake MA, Cronin CG & Boland GW Adrenal imaging. American Journal of Roentgenology 2010 194 14501460. (https://doi.org/10.2214/AJR.10.4547)

    • Search Google Scholar
    • Export Citation
  • 33

    Korobkin M, Giordano TJ, Brodeur FJ, Francis IR, Siegelman ES, Quint LE, Dunnick NR, Heiken JP & Wang HH Adrenal adenomas: relationship between histologic lipid and CT and MR findings. Radiology 1996 200 743747. (https://doi.org/10.1148/radiology.200.3.8756925)

    • Search Google Scholar
    • Export Citation
  • 34

    Nakajo M, Nakajo M, Kajiya Y, Tani A, Tsuruta M, Sugita S, Fushitani S & Umekita Y A black adrenal adenoma difficult to be differentiated from a malignant adrenal tumor by CT, MRI, scintigraphy and FDG PET/CT examinations. Annals of Nuclear Medicine 2011 25 812817. (https://doi.org/10.1007/s12149-011-0535-6)

    • Search Google Scholar
    • Export Citation
  • 35

    Murayama R, Nishie A, Hida T, Baba S, Inokuchi J, Oda Y & Honda H Uptake of 18F-FDG in adrenal adenomas is associated with unenhanced CT value and constituent cells. Clinical Nuclear Medicine 2019 44 943948. (https://doi.org/10.1097/RLU.0000000000002759)

    • Search Google Scholar
    • Export Citation
  • 36

    Matsumoto S, Hosoya Y, Lefor AK, Haruta H, Ui T, Kurashina K, Saito S, Ashizawa K, Sasaki T & Kitayama J et al. A black adrenal adenoma with high FDG uptake on PET/CT scan in a patient with esophageal carcinoma: a case report. International Journal of Surgery Case Reports 2018 44 118121. (https://doi.org/10.1016/j.ijscr.2017.11.065)

    • Search Google Scholar
    • Export Citation
  • 37

    Macadam RF Black adenoma of the human adrenal cortex. Cancer 1971 27 116119. (https://doi.org/10.1002/1097-0142(197101)27:1<116::aid-cncr2820270117>3.0.co;2-c)

    • Search Google Scholar
    • Export Citation
  • 38

    Robinson MJ, Pardo V & Rywlin AM Pigmented nodules (black adenomas) of the adrenal: an autopsy study of incidence, morphology, and function. Human Pathology 1972 3 317325. (https://doi.org/10.1016/s0046-8177(7280033-9)

    • Search Google Scholar
    • Export Citation
  • 39

    Gray DA, Woulfe J. Lipofuscin and aging: a matter of toxic waste. Science of Aging Knowledge Environment 2005 2005 re1. (https://doi.org/10.1126/sageke.2005.5.re1)

    • Search Google Scholar
    • Export Citation
  • 40

    Yin D Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radical Biology and Medicine 1996 21 871888. (https://doi.org/10.1016/0891-5849(9600175-x)

    • Search Google Scholar
    • Export Citation
  • 41

    Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN & Wolf AP Metabolic trapping as a principle of oradiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. Journal of Nuclear Medicine 1978 19 11541161.

    • Search Google Scholar
    • Export Citation
  • 42

    Park SG, Lee JH, Lee WA & Han KM Biologic correlation between glucose transporters, hexokinase-II, Ki-67 and FDG uptake in malignant melanoma. Nuclear Medicine and Biology 2012 39 11671172. (https://doi.org/10.1016/j.nucmedbio.2012.07.003)

    • Search Google Scholar
    • Export Citation
  • 43

    Koga H, Matsuo Y, Sasaki M, Nakagawa M, Kaneko K, Hayashi K, Kuwabara Y & Honda H Differential FDG accumulation associated with GLUT-1 expression in a patient with lymphoma. Annals of Nuclear Medicine 2003 17 327331. (https://doi.org/10.1007/BF02988530)

    • Search Google Scholar
    • Export Citation
  • 44

    Brown RS, Goodman TM, Zasadny KR, Greenson JK & Wahl RL Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nuclear Medicine and Biology 2002 29 443453. (https://doi.org/10.1016/s0969-8051(0200288-3)

    • Search Google Scholar
    • Export Citation
  • 45

    Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, Doi R, Hosotani R, Imamura M & Konishi J Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. Journal of Nuclear Medicine 2002 43 173180. (PMID:11850481)

    • Search Google Scholar
    • Export Citation
  • 46

    Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A & Wahl RL Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. Journal of Nuclear Medicine 1999 40 556565.

    • Search Google Scholar
    • Export Citation
  • 47

    Horiuchi C, Tsukuda M, Taguchi T, Ishiguro Y, Okudera K & Inoue T Correlation between FDG-PET findings and GLUT1 expression in salivary gland pleomorphic adenomas. Annals of Nuclear Medicine 2008 22 693698. (https://doi.org/10.1007/s12149-008-0162-z)

    • Search Google Scholar
    • Export Citation
  • 48

    Okazaki Y, Yamada S, Kitada S, Matsunaga I, Nogami E, Watanabe T, Sasaguri Y, Honma Y & Itou T Significance of 18 F-FDG PET and immunohistochemical GLUT-1 expression for cardiac myxoma. Diagnostic Pathology 2014 9 117. (https://doi.org/10.1186/1746-1596-9-117)

    • Search Google Scholar
    • Export Citation
  • 49

    Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, Hosokawa M, Kohanawa M & Tamaki N FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. Journal of Nuclear Medicine 2001 42 15511555.

    • Search Google Scholar
    • Export Citation