The phenotypic spectrum associated with OTX2 mutations in humans

in European Journal of Endocrinology
View More View Less
  • 1 Section of Molecular Basis of Rare Disease, Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
  • 2 Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
  • 3 Developmental Endocrinology Unit, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
  • 4 Department of Pediatrics, IRCCS Istituto Giannina Gaslini
  • 5 Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy

Correspondence should be addressed to S A Camper or M T Dattani; Email: scamper@med.umich.edu or m.dattani@ucl.ac.uk

*(L C Gregory, P Gergics and M Nakaguma contributed equally to this work)

Restricted access

Objective

The transcription factor OTX2 is implicated in ocular, craniofacial, and pituitary development.

Design

We aimed to establish the contribution of OTX2 mutations in congenital hypopituitarism patients with/without eye abnormalities, study functional consequences, and establish OTX2 expression in the human brain, with a view to investigate the mechanism of action.

Methods

We screened patients from the UK (n = 103), international centres (n = 24), and Brazil (n = 282); 145 were within the septo-optic dysplasia spectrum, and 264 had no eye phenotype. Transactivation ability of OTX2 variants was analysed in murine hypothalamic GT1-7 neurons. In situ hybridization was performed on human embryonic brain sections. Genetically engineered mice were generated with a series of C-terminal OTX2 variants.

Results

Two chromosomal deletions and six haploinsufficient mutations were identified in individuals with eye abnormalities; an affected relative of one patient harboured the same mutation without an ocular phenotype. OTX2 truncations led to significant transactivation reduction. A missense variant was identified in another patient without eye abnormalities; however, studies revealed it was most likely not causative. In the mouse, truncations proximal to aa219 caused anophthalmia, while distal truncations and the missense variant were tolerated. During human embryogenesis, OTX2 was expressed in the posterior pituitary, retina, ear, thalamus, choroid plexus, and partially in the hypothalamus, but not in the anterior pituitary.

Conclusions

OTX2 mutations are rarely associated with hypopituitarism in isolation without eye abnormalities, and may be variably penetrant, even within the same pedigree. Our data suggest that the endocrine phenotypes in patients with OTX2 mutations are of hypothalamic origin.

Supplementary Materials

    • Supplementary Figure 1

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 143 143 143
Full Text Views 25 25 25
PDF Downloads 34 34 34
  • 1

    Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, D'Apice MR, Nigro V & Boncinelli E A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO Journal 1993 12 27352747. (https://doi.org/10.1002/j.1460-2075.1993.tb05935.x)

    • Search Google Scholar
    • Export Citation
  • 2

    Martinez-Morales JR, Signore M, Acampora D, Simeone A & Bovolenta P Otx genes are required for tissue specification in the developing eye. Development 2001 128 20192030. (https://doi.org/10.1242/dev.128.11.2019)

    • Search Google Scholar
    • Export Citation
  • 3

    Mortensen AH, Schade V, Lamonerie T & Camper SA Deletion of OTX2 in neural ectoderm delays anterior pituitary development. Human Molecular Genetics 2015 24 939953. (https://doi.org/10.1093/hmg/ddu506)

    • Search Google Scholar
    • Export Citation
  • 4

    Henderson RH, Williamson KA, Kennedy JS, Webster AR, Holder GE, Robson AG, FitzPatrick DR, van Heyningen V & Moore AT A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Molecular Vision 2009 15 24422447.

    • Search Google Scholar
    • Export Citation
  • 5

    Rhinn M, Dierich A, Le Meur M & Ang S Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 1999 126 42954304. (https://doi.org/10.1242/dev.126.19.4295)

    • Search Google Scholar
    • Export Citation
  • 6

    Tajima T, Ohtake A, Hoshino M, Amemiya S, Sasaki N, Ishizu K & Fujieda K OTX2 loss of function mutation causes anophthalmia and combined pituitary hormone deficiency with a small anterior and ectopic posterior pituitary. Journal of Clinical Endocrinology and Metabolism 2009 94 314319. (https://doi.org/10.1210/jc.2008-1219)

    • Search Google Scholar
    • Export Citation
  • 7

    Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A & Brulet P Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 1995 121 32793290. (https://doi.org/10.1242/dev.121.10.3279)

    • Search Google Scholar
    • Export Citation
  • 8

    Matsuo I, Kuratani S, Kimura C, Takeda N & Aizawa S Mouse Otx2 functions in the formation and patterning of rostral head. Genes and Development 1995 9 26462658. (https://doi.org/10.1101/gad.9.21.2646)

    • Search Google Scholar
    • Export Citation
  • 9

    Ang SL, Jin O, Rhinn M, Daigle N, Stevenson L & Rossant J A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 1996 122 243252. (https://doi.org/10.1242/dev.122.1.243)

    • Search Google Scholar
    • Export Citation
  • 10

    Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I & Furukawa T Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nature Neuroscience 2003 6 12551263. (https://doi.org/10.1038/nn1155)

    • Search Google Scholar
    • Export Citation
  • 11

    Diaczok D, Romero C, Zunich J, Marshall I & Radovick S A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. Journal of Clinical Endocrinology and Metabolism 2008 93 43514359. (https://doi.org/10.1210/jc.2008-1189)

    • Search Google Scholar
    • Export Citation
  • 12

    Ashkenazi-Hoffnung L, Lebenthal Y, Wyatt AW, Ragge NK, Dateki S, Fukami M, Ogata T, Phillip M & Gat-Yablonski G A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency. Human Genetics 2010 127 721729. (https://doi.org/10.1007/s00439-010-0820-9)

    • Search Google Scholar
    • Export Citation
  • 13

    Ragge NK, Brown AG, Poloschek CM, Lorenz B, Henderson RA, Clarke MP, Russell-Eggitt I, Fielder A, Gerrelli D & Martinez-Barbera JP et al. Heterozygous mutations of OTX2 cause severe ocular malformations. American Journal of Human Genetics 2005 76 10081022. (https://doi.org/10.1086/430721)

    • Search Google Scholar
    • Export Citation
  • 14

    Wyatt A, Bakrania P, Bunyan DJ, Osborne RJ, Crolla JA, Salt A, Ayuso C, Newbury-Ecob R, Abou-Rayyah Y & Collin JR et al. Novel heterozygous OTX2 mutations and whole gene deletions in anophthalmia, microphthalmia and coloboma. Human Mutation 2008 29 E278E283. (https://doi.org/10.1002/humu.20869)

    • Search Google Scholar
    • Export Citation
  • 15

    Schilter KF, Schneider A, Bardakjian T, Soucy JF, Tyler RC, Reis LM & Semina EV OTX2 microphthalmia syndrome: Four novel mutations and delineation of a phenotype. Clinical Genetics 2011 79 158168. (https://doi.org/10.1111/j.1399-0004.2010.01450.x)

    • Search Google Scholar
    • Export Citation
  • 16

    Mortensen AH, MacDonald JW, Ghosh D & Camper SA Candidate genes for panhypopituitarism identified by gene expression profiling. Physiological Genomics 2011 43 11051116. (https://doi.org/10.1152/physiolgenomics.00080.2011)

    • Search Google Scholar
    • Export Citation
  • 17

    Gorbenko Del Blanco D, Romero CJ, Diaczok D, de Graaff LC, Radovick S & Hokken-Koelega AC A novel OTX2 mutation in a patient with combined pituitary hormone deficiency, pituitary malformation, and an underdeveloped left optic nerve. European Journal of Endocrinology 2012 167 441452. (https://doi.org/10.1530/EJE-12-0333)

    • Search Google Scholar
    • Export Citation
  • 18

    Verma AS & Fitzpatrick DR Anophthalmia and microphthalmia. Orphanet Journal of Rare Diseases 2007 2 47. (https://doi.org/10.1186/1750-1172-2-47)

    • Search Google Scholar
    • Export Citation
  • 19

    Alatzoglou KS & Dattani MT Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD). Indian Journal of Pediatrics 2012 79 99106. (https://doi.org/10.1007/s12098-011-0614-7)

    • Search Google Scholar
    • Export Citation
  • 20

    Matsumoto R, Suga H, Aoi T, Bando H, Fukuoka H, Iguchi G, Narumi S, Hasegawa T, Muguruma K & Ogawa W et al. Congenital pituitary hypoplasia model demonstrates hypothalamic OTX2 regulation of pituitary progenitor cells. Journal of Clinical Investigation 2020 130 641654. (https://doi.org/10.1172/JCI127378)

    • Search Google Scholar
    • Export Citation
  • 21

    Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LY, Daly AZ, Ajmal A, Perez Millan MI & Ozel AB et al. Genetics of combined pituitary hormone deficiency: roadmap into the genome era. Endocrine Reviews 2016 37 636675. (https://doi.org/10.1210/er.2016-1101)

    • Search Google Scholar
    • Export Citation
  • 22

    Nakaguma M, Correa FA, Santana LS, Benedetti AFF, Perez RV, Huayllas MKP, Miras MB, Funari MFA, Lerario AM & Mendonca BB et al. Genetic diagnosis of congenital hypopituitarism by a target gene panel: novel pathogenic variants in GLI2, OTX2 and GHRHR. Endocrine Connections 2019 8 590595. (https://doi.org/10.1530/EC-19-0085)

    • Search Google Scholar
    • Export Citation
  • 23

    Fang Q, Benedetti AF, Ma Q, Gregory L, Li JZ, Dattani M, Sadeghi-Nejad A, Arnhold IJ, Mendonca BB & Camper SA HESX1 mutations in patients with congenital hypopituitarism: variable phenotypes with the same genotype. Clinical Endocrinology 2016 85 408414. (https://doi.org/10.1111/cen.13067)

    • Search Google Scholar
    • Export Citation
  • 24

    Wetsel WC, Mellon PL, Weiner RI & Negro-Vilar A Metabolism of pro-luteinizing hormone-releasing hormone in immortalized hypothalamic neurons. Endocrinology 1991 129 15841595. (https://doi.org/10.1210/endo-129-3-1584)

    • Search Google Scholar
    • Export Citation
  • 25

    Becker K & Jerchow B Generation of transgenic mice by pronuclear microinjection. In Advanced Protocols for Animal Transgenesis: An ISTT Manual, pp. 99115. Eds Pease STL, SaundersBerlin, Heidelberg: Springer, 2011.

    • Search Google Scholar
    • Export Citation
  • 26

    Gregory LC Investigation of New Candidate Genes in a Cohort of Patients with Familial Congenital Hypopituitarism and Associated Disorders. Doctoral thesis, URI:1541141. University College London, 2017.

    • Search Google Scholar
    • Export Citation
  • 27

    Gan L, Ni PY, Ge Y, Xiao YF, Sun CY, Deng L, Zhang W, Wu SS, Liu Y & Jiang W et al. Histone deacetylases regulate gonadotropin-releasing hormone I gene expression via modulating Otx2-driven transcriptional activity. PLoS ONE 2012 7 e39770. (https://doi.org/10.1371/journal.pone.0039770)

    • Search Google Scholar
    • Export Citation
  • 28

    McCabe MJ, Alatzoglou KS & Dattani MT Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Practice and Research: Clinical Endocrinology and Metabolism 2011 25 115124. (https://doi.org/10.1016/j.beem.2010.06.008)

    • Search Google Scholar
    • Export Citation
  • 29

    Chatelain G, Fossat N, Brun G & Lamonerie T Molecular dissection reveals decreased activity and not dominant negative effect in human OTX2 mutants. Journal of Molecular Medicine 2006 84 604615. (https://doi.org/10.1007/s00109-006-0048-2)

    • Search Google Scholar
    • Export Citation
  • 30

    Vincent A, Forster N, Maynes JT, Paton TA, Billingsley G, Roslin NM, Ali A, Sutherland J, Wright T & Westall CA et al. OTX2 mutations cause autosomal dominant pattern dystrophy of the retinal pigment epithelium. Journal of Medical Genetics 2014 51 797805. (https://doi.org/10.1136/jmedgenet-2014-102620)

    • Search Google Scholar
    • Export Citation
  • 31

    Nakano T, Murata T, Matsuo I & Aizawa S OTX2 directly interacts with LIM1 and HNF-3beta. Biochemical and Biophysical Research Communications 2000 267 6470. (https://doi.org/10.1006/bbrc.1999.1872)

    • Search Google Scholar
    • Export Citation
  • 32

    Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, Abugessaisa I, Fukuda S, Hori F & Ishikawa-Kato S et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biology 2015 16 22. (https://doi.org/10.1186/s13059-014-0560-6)

    • Search Google Scholar
    • Export Citation
  • 33

    Planques A, Oliveira Moreira V, Dubreuil C, Prochiantz A & Di Nardo AA OTX2 signals from the choroid plexus to regulate adult neurogenesis. eNeuro 2019 6 e026218.2019 . (https://doi.org/10.1523/ENEURO.0262-18.2019)

    • Search Google Scholar
    • Export Citation
  • 34

    Larsen KB, Lutterodt M, Rath MF & Moller M Expression of the homeobox genes PAX6, OTX2, and OTX1 in the early human fetal retina. International Journal of Developmental Neuroscience 2009 27 485492. (https://doi.org/10.1016/j.ijdevneu.2009.04.004)

    • Search Google Scholar
    • Export Citation
  • 35

    Dateki S, Kosaka K, Hasegawa K, Tanaka H, Azuma N, Yokoya S, Muroya K, Adachi M, Tajima T & Motomura K et al. Heterozygous orthodenticle homeobox 2 mutations are associated with variable pituitary phenotype. Journal of Clinical Endocrinology and Metabolism 2010 95 756764. (https://doi.org/10.1210/jc.2009-1334)

    • Search Google Scholar
    • Export Citation
  • 36

    Secco A, di Iorgi N, Napoli F, Calandra E, Calcagno A, Ghezzi M, Frassinetti C, Fratangeli N, Parodi S & Benassai M et al. Reassessment of the growth hormone status in young adults with childhood-onset growth hormone deficiency: reappraisal of insulin tolerance testing. Journal of Clinical Endocrinology and Metabolism 2009 94 41954204. (https://doi.org/10.1210/jc.2009-0602)

    • Search Google Scholar
    • Export Citation
  • 37

    Cerbone M & Dattani MT Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency. Growth Hormone and IGF Research 2017 37 1925. (https://doi.org/10.1016/j.ghir.2017.10.005)

    • Search Google Scholar
    • Export Citation