Tissue-specific glucose partitioning and fat content in prediabetes and type 2 diabetes: whole-body PET/MRI during hyperinsulinemia

in European Journal of Endocrinology
View More View Less
  • 1 Department of Medical Sciences, Clinical Diabetes and Metabolism
  • 2 Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
  • 3 Antaros Medical, Mölndal, Sweden
  • 4 Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca, Gothenburg, Sweden
  • 5 Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Correspondence should be addressed to J W Eriksson or H Ahlström; Email: jan.eriksson@medsci.uu.se or hakan.ahlstrom@radiol.uu.se

Objective

To obtain direct quantifications of glucose turnover, volumes and fat content of several tissues in the development of type 2 diabetes (T2D) using a novel integrated approach for whole-body imaging.

Design and methods

Hyperinsulinemic–euglycemic clamps and simultaneous whole-body integrated [18F]FDG-PET/MRI with automated analyses were performed in control (n = 12), prediabetes (n = 16) and T2D (n = 13) subjects matched for age, sex and BMI.

Results

Whole-body glucose uptake (Rd) was reduced by approximately 25% in T2D vs control subjects, and partitioning to brain was increased from 3.8% of total Rd in controls to 7.1% in T2D. In liver, subcutaneous AT, thigh muscle, total tissue glucose metabolic rates (MRglu) and their % of total Rd were reduced in T2D compared to control subjects. The prediabetes group had intermediate findings. Total MRglu in heart, visceral AT, gluteus and calf muscle was similar across groups. Whole-body insulin sensitivity assessed as glucose infusion rate correlated with liver MRglu but inversely with brain MRglu. Liver fat content correlated with MRglu in brain but inversely with MRglu in other tissues. Calf muscle fat was inversely associated with MRglu only in the same muscle group.

Conclusions

This integrated imaging approach provides detailed quantification of tissue-specific glucose metabolism. During T2D development, insulin-stimulated glucose disposal is impaired and increasingly shifted away from muscle, liver and fat toward the brain. Altered glucose handling in the brain and liver fat accumulation may aggravate insulin resistance in several organs.

Supplementary Materials

    • Supplementary methods
    • Supplementary Table 1 – Medications used by study participants
    • Supplementary Table 2. Glucose Metabolic Rates (MRglu)
    • Supplementary Table 3. Glucose turnover in the whole body and percentage for tissue glucose partitioning.
    • Supplementary Figure 1

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 46 46 46
Full Text Views 6 6 6
PDF Downloads 10 10 10
  • 1

    Röder PV, Wu B, Liu Y & Han W Pancreatic regulation of glucose homeostasis. Experimental and Molecular Medicine 2016 48 e219. (https://doi.org/10.1038/emm.2016.6)

    • Search Google Scholar
    • Export Citation
  • 2

    Saltiel AR & Kahn CR Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001 414 799806. (https://doi.org/10.1038/414799a)

    • Search Google Scholar
    • Export Citation
  • 3

    Triplitt CL Examining the mechanisms of glucose regulation. American Journal of Managed Care 2012 18 (1 Supplement) S4S10.

  • 4

    Alsahli M & Gerich JE Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Research and Clinical Practice 2017 133 19. (https://doi.org/10.1016/j.diabres.2017.07.033)

    • Search Google Scholar
    • Export Citation
  • 5

    Defronzo RA Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009 58 773795. (https://doi.org/10.2337/db09-9028)

    • Search Google Scholar
    • Export Citation
  • 6

    McCall AL Cerebral glucose metabolism in diabetes mellitus. European Journal of Pharmacology 2004 490 147158. (https://doi.org/10.1016/j.ejphar.2004.02.052)

    • Search Google Scholar
    • Export Citation
  • 7

    Virtanen KA, Lönnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, Tolvanen T, Knuuti J, Rönnemaa T, Huupponen Ret al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. Journal of Clinical Endocrinology and Metabolism 2002 87 39023910. (https://doi.org/10.1210/jcem.87.8.8761)

    • Search Google Scholar
    • Export Citation
  • 8

    Huo E, Wilson DM, Eisenmenger L & Hope TA The role of PET/MR imaging in precision medicine. PET Clinics 2017 12 489501. (https://doi.org/10.1016/j.cpet.2017.05.006)

    • Search Google Scholar
    • Export Citation
  • 9

    Johansson E, Lubberink M, Heurling K, Eriksson JW, Skrtic S, Ahlström H & Kullberg J Whole-body imaging of tissue-specific insulin sensitivity and body composition by using an integrated PET/MR system: a feasibility study. Radiology 2018 286 271278, (https://doi.org/10.1148/radiol.2017162949)

    • Search Google Scholar
    • Export Citation
  • 10

    Boersma GJ, Johansson E, Pereira MJ, Heurling K, Skrtic S, Lau J, Katsogiannos P, Panagiotou G, Lubberink M & Kullberg J et al. Altered glucose uptake in muscle, visceral adipose tissue, and brain predict whole-body insulin resistance and may contribute to the development of type 2 diabetes: a combined PET/MR study. Hormone and Metabolic Research 2018 50 e10.(https://doi.org/10.1055/a-0643-4739)

    • Search Google Scholar
    • Export Citation
  • 11

    Gerich JE Physiology of glucose homeostasis. Diabetes, Obesity and Metabolism 2000 2 345350. (https://doi.org/10.1046/j.1463-1326.2000.00085.x)

    • Search Google Scholar
    • Export Citation
  • 12

    Rebelos E, Immonen H, Bucci M, Hannukainen JC, Nummenmaa L, Honka MJ, Soinio M, Salminen P, Ferrannini E & Iozzo P et al. Brain glucose uptake is associated with endogenous glucose production in obese patients before and after bariatric surgery and predicts metabolic outcome at follow-up. Diabetes, Obesity and Metabolism 2019 21 218226. (https://doi.org/10.1111/dom.13501)

    • Search Google Scholar
    • Export Citation
  • 13

    American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes – 2021. Diabetes Care 2021 44 (Supplement 1) S15S33. (https://doi.org/10.2337/dc21-S002)

    • Search Google Scholar
    • Export Citation
  • 14

    Guglielmo P, Ekstrom S, Strand R, Visvanathar R, Malmberg F, Johansson E, Pereira MJ, Skrtic S, Carlsson BCL & Eriksson JW et al. Validation of automated whole-body analysis of metabolic and morphological parameters from an integrated FDG-PET/MRI acquisition. Scientific Reports 2020 10 5331. (https://doi.org/10.1038/s41598-020-62353-9)

    • Search Google Scholar
    • Export Citation
  • 15

    Strand R, Malmberg F, Johansson L, Lind L, Sundbom M, Ahlström H & Kullberg J A concept for holistic whole body MRI data analysis, imiomics. PLoS ONE 2017 12 e0169966. (https://doi.org/10.1371/journal.pone.0169966)

    • Search Google Scholar
    • Export Citation
  • 16

    Ekström S, Malmberg F, Ahlström H, Kullberg J & Strand R Fast graph-cut based optimization for practical dense deformable registration of volume images. Computerized Medical Imaging and Graphics 2020 84 101745. (https://doi.org/10.1016/j.compmedimag.2020.101745)

    • Search Google Scholar
    • Export Citation
  • 17

    Patlak CS, Blasberg RG & Fenstermacher JD Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Journal of Cerebral Blood Flow and Metabolism 1983 3 17. (https://doi.org/10.1038/jcbfm.1983.1)

    • Search Google Scholar
    • Export Citation
  • 18

    D'Orazio P, Burnett RW, Fogh-Andersen N, Jacobs E, Kuwa K, Kulpmann WR, Larsson L, Lewenstam A, Maas AH & Mager G et al. Approved IFCC recommendation on reporting results for blood glucose: International Federation of Clinical Chemistry and Laboratory Medicine Scientific Division, Working Group on Selective Electrodes and Point-of-Care Testing (IFCC-SD-WG-SEPOCT). Clinical Chemistry and Laboratory Medicine 2006 44 14861490. (https://doi.org/10.1515/CCLM.2006.275)

    • Search Google Scholar
    • Export Citation
  • 19

    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O & Shinohara M The ()14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. Journal of Neurochemistry 1977 28 897916. (https://doi.org/10.1111/j.1471-4159.1977.tb10649.x)

    • Search Google Scholar
    • Export Citation
  • 20

    Lee SJ, Janssen I, Heymsfield SB & Ross R Relation between whole-body and regional measures of human skeletal muscle. American Journal of Clinical Nutrition 2004 80 12151221. (https://doi.org/10.1093/ajcn/80.5.1215)

    • Search Google Scholar
    • Export Citation
  • 21

    Iozzo P, Gastaldelli A, Järvisalo MJ, Kiss J, Borra R, Buzzigoli E, Viljanen A, Naum G, Viljanen T & Oikonen V et al. 18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: a validation study. Journal of Nuclear Medicine 2006 47 10161022.

    • Search Google Scholar
    • Export Citation
  • 22

    Zhang Y, Huo M, Zhou J & Xie S PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Computer Methods and Programs in Biomedicine 2010 99 306314. (https://doi.org/10.1016/j.cmpb.2010.01.007)

    • Search Google Scholar
    • Export Citation
  • 23

    Immonen H, Hannukainen JC, Iozzo P, Soinio M, Salminen P, Saunavaara V, Borra R, Parkkola R, Mari A & Lehtimäki T et al. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. Journal of Hepatology 2014 60 377383. (https://doi.org/10.1016/j.jhep.2013.09.012)

    • Search Google Scholar
    • Export Citation
  • 24

    Iozzo P, Hallsten K, Oikonen V, Virtanen KA, Kemppainen J, Solin O, Ferrannini E, Knuuti J & Nuutila P Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: evidence for a relationship with glycemic control. Journal of Clinical Endocrinology and Metabolism 2003 88 20552060. (https://doi.org/10.1210/jc.2002-021446)

    • Search Google Scholar
    • Export Citation
  • 25

    Ng JM, Azuma K, Kelley C, Pencek R, Radikova Z, Laymon C, Price J, Goodpaster BH & Kelley DE PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. American Journal of Physiology: Endocrinology and Metabolism 2012 303 E1134E1141. (https://doi.org/10.1152/ajpendo.00282.2012)

    • Search Google Scholar
    • Export Citation
  • 26

    Yokoyama I, Ohtake T, Momomura S, Yonekura K, Kobayakawa N, Aoyagi T, Sugiura S, Yamada N, Ohtomo K & Sasaki Y et al. Insulin action on heart and skeletal muscle FDG uptake in patients with hypertriglyceridemia. Journal of Nuclear Medicine 1999 40 11161121.

    • Search Google Scholar
    • Export Citation
  • 27

    DeFronzo RA & Tripathy D Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009 32 S157S163. (https://doi.org/10.2337/dc09-S302)

    • Search Google Scholar
    • Export Citation
  • 28

    Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N, Harris TB, Kritchevsky S, Tylavsky FA & Nevitt M et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 2009 32 19931997. (https://doi.org/10.2337/dc09-0264)

    • Search Google Scholar
    • Export Citation
  • 29

    Phielix E & Mensink M Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiology and Behavior 2008 94 252258. (https://doi.org/10.1016/j.physbeh.2008.01.020)

    • Search Google Scholar
    • Export Citation
  • 30

    DeFronzo RA, Gunnarsson R, Björkman O, Olsson M & Wahren J Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. Journal of Clinical Investigation 1985 76 149155. (https://doi.org/10.1172/JCI111938)

    • Search Google Scholar
    • Export Citation
  • 31

    Reichkendler MH, Auerbach P, Rosenkilde M, Christensen AN, Holm S, Petersen MB, Lagerberg A, Larsson HB, Rostrup E & Mosbech TH et al. Exercise training favors increased insulin-stimulated glucose uptake in skeletal muscle in contrast to adipose tissue: a randomized study using FDG PET imaging. American Journal of Physiology: Endocrinology and Metabolism 2013 305 E496E506. (https://doi.org/10.1152/ajpendo.00128.2013)

    • Search Google Scholar
    • Export Citation
  • 32

    Burdakov D, Luckman SM & Verkhratsky A Glucose-sensing neurons of the hypothalamus. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences 2005 360 22272235. (https://doi.org/10.1098/rstb.2005.1763)

    • Search Google Scholar
    • Export Citation
  • 33

    Obici S, Feng Z, Karkanias G, Baskin DG & Rossetti L Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nature Neuroscience 2002 5 566572. (https://doi.org/10.1038/nn0602-861)

    • Search Google Scholar
    • Export Citation
  • 34

    Rojas JM & Schwartz MW Control of hepatic glucose metabolism by islet and brain. Diabetes, Obesity and Metabolism 2014 16 3340. (https://doi.org/10.1111/dom.12332)

    • Search Google Scholar
    • Export Citation
  • 35

    Carvalho E, Kotani K, Peroni OD & Kahn BB Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. American Journal of Physiology: Endocrinology and Metabolism 2005 289 E551E561. (https://doi.org/10.1152/ajpendo.00116.2005)

    • Search Google Scholar
    • Export Citation
  • 36

    Snijder MB, Visser M, Dekker JM, Goodpaster BH, Harris TB, Kritchevsky SB, De Rekeneire N, Kanaya AM, Newman AB & Tylavsky FA et al. Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study. Diabetologia 2005 48 301308. (https://doi.org/10.1007/s00125-004-1637-7)

    • Search Google Scholar
    • Export Citation
  • 37

    Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI & Kahn BB Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001 409 729733. (https://doi.org/10.1038/35055575)

    • Search Google Scholar
    • Export Citation
  • 38

    Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, Patel RT, Lee J, Chen S & Peroni OD et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 2014 159 318332. (https://doi.org/10.1016/j.cell.2014.09.035)

    • Search Google Scholar
    • Export Citation
  • 39

    Iozzo P, Chareonthaitawee P, Dutka D, Betteridge DJ, Ferrannini E & Camici PG Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes 2002 51 30203024. (https://doi.org/10.2337/diabetes.51.10.3020)

    • Search Google Scholar
    • Export Citation
  • 40

    Iozzo P, Chareonthaitawee P, Di Terlizzi M, Betteridge DJ, Ferrannini E & Camici PG Regional myocardial blood flow and glucose utilization during fasting and physiological hyperinsulinemia in humans. American Journal of Physiology: Endocrinology and Metabolism 2002 282 E1163E1171. (https://doi.org/10.1152/ajpendo.00386.2001)

    • Search Google Scholar
    • Export Citation
  • 41

    Yokoyama I, Inoue Y, Moritan T, Ohtomo K & Nagai R Myocardial glucose utilisation in type II diabetes mellitus patients treated with sulphonylurea drugs. European Journal of Nuclear Medicine and Molecular Imaging 2006 33 703708. (https://doi.org/10.1007/s00259-005-0042-x)

    • Search Google Scholar
    • Export Citation
  • 42

    Gastaldelli A, Cusi K, Pettiti M, Hardies J, Miyazaki Y, Berria R, Buzzigoli E, Sironi AM, Cersosimo E & Ferrannini E et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007 133 496506. (https://doi.org/10.1053/j.gastro.2007.04.068)

    • Search Google Scholar
    • Export Citation
  • 43

    Kotronen A, Juurinen L, Hakkarainen A, Westerbacka J, Cornér A, Bergholm R & Yki-Järvinen H Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care 2008 31 165169. (https://doi.org/10.2337/dc07-1463)

    • Search Google Scholar
    • Export Citation
  • 44

    Yki-Järvinen H Fat in the liver and insulin resistance. Annals of Medicine 2005 37 347356. (https://doi.org/10.1080/07853890510037383)

    • Search Google Scholar
    • Export Citation
  • 45

    Ogawa M, Lester R, Akima H & Gorgey AS Quantification of intermuscular and intramuscular adipose tissue using magnetic resonance imaging after neurodegenerative disorders. Neural Regeneration Research 2017 12 21002105. (https://doi.org/10.4103/1673-5374.221170)

    • Search Google Scholar
    • Export Citation
  • 46

    Matsuda M & DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999 22 14621470.

    • Search Google Scholar
    • Export Citation