Exposure to non-persistent pesticides and puberty timing: a systematic review of the epidemiological evidence

in European Journal of Endocrinology
View More View Less
  • 1 Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, Granada, Spain
  • 2 Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
  • 3 Biomedical Research Center (CIBM), University of Granada, Granada, Spain
  • 4 CIBER de Epidemiología y Salud Pública (CIBERESP), Granada, Spain

Correspondence should be addressed to C Freire; Email: cfreire@ugr.es
Restricted access

Background

Numerous modern non-persistent pesticides have demonstrated estrogenic/anti-androgenic activity and have been classified as endocrine-disrupting chemicals (EDCs). Processes involved in puberty development are vulnerable to EDCs, such as compounds that interfere with the metabolism or activity of sex steroids.

Objective

To conduct a systematic review of epidemiological studies on the relationship between early-life exposure to non-persistent pesticides and puberty timing and/or sexual maturation in girls and boys.

Methods

A systematic search was carried out using MEDLINE and SCOPUS databases, including original articles published up to November 2020.

Results

Thirteen studies were selected after excluding non-original and non-human studies. Exposure to different types of pesticides has been associated with altered puberty timing in girls and/or boys in eight studies. In utero exposure to atrazine has been related to earlier age of menarche in girls; exposure to organophosphate (OP) pesticides has been related to delayed sexual development in boys and girls; childhood pyrethroid exposure has been associated with pubertal delay in girls and pubertal advancement in boys; and prenatal/childhood exposure to multiple pesticides has been linked to earlier puberty onset in girls and pubertal delay in boys.

Conclusions

Most of the reviewed studies describe a relationship between pesticide exposure and changes in the age of puberty onset or sex hormone levels, although the quality of the evidence is generally low. Further well-designed longitudinal studies are warranted on specific classes of pesticides and on possible interactions between different types of compounds.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 677 677 559
Full Text Views 48 48 36
PDF Downloads 54 54 40
  • 1

    Aksglaede L, Sørensen K, Petersen JH, Skakkebæk NE & Juul A Recent decline in age at breast development: the Copenhagen puberty study. Pediatrics 2009 123 e932e939. (available at: http://pediatrics.aappublications.org/content/123/5/e932.abstract) (https://doi.org/10.1542/peds.2008-2491)

    • Search Google Scholar
    • Export Citation
  • 2

    Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J & Bourguignon JP The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocrine Reviews 2003 24 668693. (https://doi.org/10.1210/er.2002-0019)

    • Search Google Scholar
    • Export Citation
  • 3

    Kaltiala-Heino, Marttunen, Rantanen & Rimpela Early puberty is associated with mental health problems in middle adolescence. Social Science and Medicine 2003 57 10551064. (https://doi.org/10.1016/S0277-9536(02)00480-X)

    • Search Google Scholar
    • Export Citation
  • 4

    Lakshman R, Forouhi N, Luben R, Bingham S, Khaw K, Wareham N & Ong KK Association between age at menarche and risk of diabetes in adults: results from the EPIC-Norfolk cohort study. Diabetologia 2008 51 781786. (https://doi.org/10.1007/s00125-008-0948-5)

    • Search Google Scholar
    • Export Citation
  • 5

    Lakshman R, Forouhi NG, Sharp SJ, Luben R, Bingham SA, Khaw KT, Wareham NJ & Ong KK Early age at menarche associated with cardiovascular disease and mortality. Journal of Clinical Endocrinology and Metabolism 2009 94 49534960. (https://doi.org/10.1210/jc.2009-1789)

    • Search Google Scholar
    • Export Citation
  • 6

    Ojeda SR & Lomniczi A Puberty in 2013: unravelling the mystery of puberty. Nature Reviews: Endocrinology 2014 10 6769. (https://doi.org/10.1038/nrendo.2013.233)

    • Search Google Scholar
    • Export Citation
  • 7

    Lian Q, Mao Y, Luo S, Zhang S, Tu X, Zuo X, Lou C & Zhou W Puberty timing associated with obesity and central obesity in Chinese Han girls. BMC Pediatrics 2019 19 1. (https://doi.org/10.1186/s12887-018-1376-4)

    • Search Google Scholar
    • Export Citation
  • 8

    Villamor E & Jansen EC Nutritional determinants of the timing of puberty. Annual Review of Public Health 2016 37 3346. (https://doi.org/10.1146/annurev-publhealth-031914-122606)

    • Search Google Scholar
    • Export Citation
  • 9

    Buck Louis GM, Gray LE, Marcus M, Ojeda SR, Pescovitz OH, Witchel SF, Sippell W, Abbott DH, Soto A & Tyl RW et al. Environmental factors and puberty timing: expert panel research needs. Pediatrics 2008 121 (Supplement 3) S192S207. (https://doi.org/10.1542/peds.1813E)

    • Search Google Scholar
    • Export Citation
  • 10

    Encarnação T, Pais AACC, Campos MG & Burrows HD Endocrine disrupting chemicals: impact on human health, wildlife and the environment. Science Progress 2019 102 342. (https://doi.org/10.1177/0036850419826802)

    • Search Google Scholar
    • Export Citation
  • 11

    Yilmaz B, Terekeci H, Sandal S & Kelestimur F Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Reviews in Endocrine and Metabolic Disorders 2020 21 127147. (https://doi.org/10.1007/s11154-019-09521-z)

    • Search Google Scholar
    • Export Citation
  • 12

    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT & Gore AC Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine Reviews 2009 30 293342. (https://doi.org/10.1210/er.2009-0002)

    • Search Google Scholar
    • Export Citation
  • 13

    Ouyang F, Perry MJ, Venners SA, Chen C, Wang B, Yang F, Fang Z, Zang T, Wang L & Xu X et al. Serum DDT, age at menarche, and abnormal menstrual cycle length. Occupational and Environmental Medicine 2005 62 878884. (https://doi.org/10.1136/oem.2005.020248)

    • Search Google Scholar
    • Export Citation
  • 14

    Sergeyev O, Burns JS, Williams PL, Korrick SA, Lee MM, Revich B & Hauser R The association of peripubertal serum concentrations of organochlorine chemicals and blood lead with growth and pubertal development in a longitudinal cohort of boys: a review of published results from the Russian Children’s Study. Reviews on Environmental Health 2017 32 8392. (https://doi.org/10.1515/reveh-2016-0052)

    • Search Google Scholar
    • Export Citation
  • 15

    Kojima H, Katsura E, Takeuchi S, Niiyama K & Kobayashi K Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environmental Health Perspectives 2004 112 524531. (https://doi.org/10.1289/ehp.6649)

    • Search Google Scholar
    • Export Citation
  • 16

    Orton F, Rosivatz E, Scholze M & Kortenkamp A Widely used pesticides with previously unknown endocrine activity revealed as in vitro antiandrogens. Environmental Health Perspectives 2011 119 794800. (https://doi.org/10.1289/ehp.1002895)

    • Search Google Scholar
    • Export Citation
  • 17

    Yu K, Li G, Feng W, Liu L, Zhang J, Wu W, Xu L & Yan Y Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish. Chemico-Biological Interactions 2015 239 2633. (https://doi.org/10.1016/j.cbi.2015.06.010)

    • Search Google Scholar
    • Export Citation
  • 18

    Viswanath G, Chatterjee S, Dabral S, Nanguneri SR, Divya G & Roy P Anti-androgenic endocrine disrupting activities of chlorpyrifos and piperophos. Journal of Steroid Biochemistry and Molecular Biology 2010 120 2229. (https://doi.org/10.1016/j.jsbmb.2010.02.032)

    • Search Google Scholar
    • Export Citation
  • 19

    Walsh LP, Webster DR & Stocco DM Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (StAR) gene. Journal of Endocrinology 2000 167 253263. (https://doi.org/10.1677/joe.0.1670253)

    • Search Google Scholar
    • Export Citation
  • 20

    Dong Y, Wang Y, Zhu Q, Li X, Huang T, Li H, Zhao J & Ge RS Dimethoate blocks pubertal differentiation of Leydig cells in rats. Chemosphere 2020 241 125036. (https://doi.org/10.1016/j.chemosphere.2019.125036)

    • Search Google Scholar
    • Export Citation
  • 21

    Fei J, Qu JH, Ding XL, Xue K, Lu CC, Chen JF, Song L, Xia YK, Wang SL & Wang XR Fenvalerate inhibits the growth of primary cultured rat preantral ovarian follicles. Toxicology 2010 267 16. (https://doi.org/10.1016/j.tox.2009.10.022)

    • Search Google Scholar
    • Export Citation
  • 22

    Fujino C, Watanabe Y, Sanoh S, Nakajima H, Uramaru N, Kojima H, Yoshinari K, Ohta S & Kitamura S Activation of PXR, CAR and PPARα by pyrethroid pesticides and the effect of metabolism by rat liver microsomes. Heliyon 2019 5 e02466. (https://doi.org/10.1016/j.heliyon.2019.e02466)

    • Search Google Scholar
    • Export Citation
  • 23

    Huang Q & Chen Q Mediating roles of PPARs in the effects of environmental chemicals on sex steroids. PPAR Research 2017 2017 3203161. (https://doi.org/10.1155/2017/3203161)

    • Search Google Scholar
    • Export Citation
  • 24

    Wang J, Dai S, Guo Y, Xie W & Zhai Y Biology of PXR: role in drug-hormone interactions. EXCLI Journal 2014 13 728739.

  • 25

    Archer E & Van Wyk JH The potential anti-androgenic effect of agricultural pesticides used in the Western Cape: in vitro investigation of mixture effects. Water SA 2015 41 129137. (https://doi.org/10.4314/wsa.v41i1.16)

    • Search Google Scholar
    • Export Citation
  • 26

    Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC & Séralini GE Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 2009 262 184191. (https://doi.org/10.1016/j.tox.2009.06.006)

    • Search Google Scholar
    • Export Citation
  • 27

    Manservisi F, Lesseur C, Panzacchi S, Mandrioli D, Falcioni L, Bua L, Manservigi M, Spinaci M, Galeati G & Mantovani A et al. The Ramazzini Institute 13-week pilot study glyphosate-based herbicides administered at human-equivalent dose to Sprague Dawley rats: effects on development and endocrine system. Environmental Health 2019 18 15. (https://doi.org/10.1186/s12940-019-0453-y)

    • Search Google Scholar
    • Export Citation
  • 28

    Aguilar-Garduño C, Lacasaña M, Blanco-Muñoz J, Rodríguez-Barranco M, Hernández AF, Bassol S, González-Alzaga B & Cebrián ME Changes in male hormone profile after occupational organophosphate exposure. A longitudinal study. Toxicology 2013 307 5565. (https://doi.org/10.1016/j.tox.2012.11.001)

    • Search Google Scholar
    • Export Citation
  • 29

    Yucra S, Rubio J, Gasco M, Gonzales C, Steenland K & Gonzales GF Semen quality and reproductive sex hormone levels in Peruvian pesticide sprayers. International Journal of Occupational and Environmental Health 2006 12 355361. (https://doi.org/10.1179/oeh.2006.12.4.355)

    • Search Google Scholar
    • Export Citation
  • 30

    Morgan RL, Whaley P, Thayer KA & Schünemann HJ Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environment International 2018 121 10271031. (https://doi.org/10.1016/j.envint.2018.07.015)

    • Search Google Scholar
    • Export Citation
  • 31

    Zorzela L, Loke YK, Ioannidis JP, Golder S, Santaguida P, Altman DG, Moher D, Vohra SPRISMAHarms Group & Clark J PRISMA harms checklist: improving harms reporting in systematic reviews. BMJ 2016 352 i157. (https://doi.org/10.1136/bmj.i157)

    • Search Google Scholar
    • Export Citation
  • 32

    Morgan RL, Thayer KA, Bero L, Bruce N, Falck-Ytter Y, Ghersi D, Guyatt G, Hooijmans C, Langendam M & Mandrioli D et al. GRADE: assessing the quality of evidence in environmental and occupational health. Environment International 2016 92–93 611616. (https://doi.org/10.1016/j.envint.2016.01.004)

    • Search Google Scholar
    • Export Citation
  • 33

    Guyatt GH, Oxman AD, Sultan S, Glasziou P, Akl EA, Alonso-Coello P, Atkins D, Kunz R, Brozek J & Montori V et al. GRADE guidelines: 9. Rating up the quality of evidence. Journal of Clinical Epidemiology 2011 64 13111316. (https://doi.org/10.1016/j.jclinepi.2011.06.004)

    • Search Google Scholar
    • Export Citation
  • 34

    Coppola L, Tait S, Ciferri L, Frustagli G, Merola C, Perugini M, Fabbrizi E & La Rocca C Integrated approach to evaluate the association between exposure to pesticides and idiopathic premature thelarche in girls: the PEACH project. International Journal of Molecular Sciences 2020 21 3282. (available at: www.mdpi.com/journal/ijms) (https://doi.org/10.3390/ijms21093282)

    • Search Google Scholar
    • Export Citation
  • 35

    Graham MJ, Larsen U & Xu X Secular trend in age at menarche in China: a case study of two rural counties in Anhui Province. Journal of Biosocial Science 1999 31 257267. (https://doi.org/10.1017/s0021932099002576)

    • Search Google Scholar
    • Export Citation
  • 36

    Garry VF, Harkins M, Lyubimov A, Erickson L & Long L Reproductive outcomes in the women of the Red River Valley of the north. I. The spouses of pesticide applicators: pregnancy loss, age at menarche, and exposures to pesticides. Journal of Toxicology and Environmental Heal: Part A 2002 65 769786. (https://doi.org/10.1080/00984100290071333)

    • Search Google Scholar
    • Export Citation
  • 37

    Guillette EA, Conard C, Lares F, Aguilar MG, McLachlan J & Guillette LJ Altered breast development in young girls from an agricultural environment. Environmental Health Perspectives 2006 114 471475. (https://doi.org/10.1289/ehp.8280)

    • Search Google Scholar
    • Export Citation
  • 38

    Croes K, Baeyens W, Bruckers L, Den Hond E, Koppen G, Nelen V, Van de Mieroop E, Keune H, Dhooge W & Schoeters G et al. Hormone levels and sexual development in Flemish adolescents residing in areas differing in pollution pressure. International Journal of Hygiene and Environmental Health 2009 212 612625. (https://doi.org/10.1016/j.ijheh.2009.05.002)

    • Search Google Scholar
    • Export Citation
  • 39

    English RG, Perry M, Lee MM, Hoffman E, Delport S & Dalvie MA Farm residence and reproductive health among boys in rural South Africa. Environment International 2012 47 7379. (https://doi.org/10.1016/j.envint.2012.06.006)

    • Search Google Scholar
    • Export Citation
  • 40

    Suh J, Choi HS, Kwon A, Chae HW & Kim HS Effect of agricultural pesticide on precocious puberty in urban children: an exploratory study. Clinical and Experimental Pediatrics 2020 63 146150. (https://doi.org/10.3345/cep.2019.00416)

    • Search Google Scholar
    • Export Citation
  • 41

    Rodríguez-López A, Mejía-Saucedo R, Calderón-Hernández J, Labrada-Martagón V & Yáñez-Estrada L Alteraciones del ciclo menstrual de adolescentes expuestas no Ocupacionalmente a una mezcla de plaguicidas de una zona agrícola de San Luis Potosí, México. Estudio piloto. Revista Internacional de Contaminación Ambiental 2020 36 9971010. (https://doi.org/10.20937/RICA.53495)

    • Search Google Scholar
    • Export Citation
  • 42

    Ye X, Pan W, Zhao S, Zhao Y, Zhu Y, Liu J & Liu W Relationships of pyrethroid exposure with gonadotropin levels and pubertal development in Chinese boys. Environmental Science and Technology 2017 51 63796386. (https://doi.org/10.1021/acs.est.6b05984)

    • Search Google Scholar
    • Export Citation
  • 43

    Ye X, Pan W, Zhao Y, Zhao S, Zhu Y, Liu W & Liu J Association of pyrethroids exposure with onset of puberty in Chinese girls. Environmental Pollution 2017 227 606612. (https://doi.org/10.1016/j.envpol.2017.04.035)

    • Search Google Scholar
    • Export Citation
  • 44

    Namulanda G, Taylor E, Maisonet M, Boyd Barr D, Flanders WD, Olson D, Qualters JR, Vena J, Northstone K & Naeher L In utero exposure to atrazine analytes and early menarche in the Avon Longitudinal Study of Parents and Children Cohort. Environmental Research 2017 156 420425. (https://doi.org/10.1016/j.envres.2017.04.004)

    • Search Google Scholar
    • Export Citation
  • 45

    Croes K, Den Hond E, Bruckers L, Govarts E, Schoeters G, Covaci A, Loots I, Morrens B, Nelen V & Sioen I et al. Endocrine actions of pesticides measured in the Flemish environment and health studies (FLEHS I and II). Environmental Science and Pollution Research International 2015 22 1458914599. (https://doi.org/10.1007/s11356-014-3437-z)

    • Search Google Scholar
    • Export Citation
  • 46

    Wohlfahrt-Veje C, Andersen HR, Jensen TK, Grandjean P, Skakkebæk NE & Main KM Smaller genitals at school age in boys whose mothers were exposed to non-persistent pesticides in early pregnancy. International Journal of Andrology 2012 35 265272. (https://doi.org/10.1111/j.1365-2605.2012.01252.x)

    • Search Google Scholar
    • Export Citation
  • 47

    Wohlfahrt-Veje C, Andersen HR, Schmidt IM, Aksglaede L, Sørensen K, Juul A, Jensen TK, Grandjean P, Skakkebæk NE & Main KM Early breast development in girls after prenatal exposure to non-persistent pesticides. International Journal of Andrology 2012 35 273282. (https://doi.org/10.1111/j.1365-2605.2011.01244.x)

    • Search Google Scholar
    • Export Citation
  • 48

    Verma R & Mohanty B Early-Life exposure to dimethoate-induced reproductive toxicity: evaluation of effects on pituitary-testicular axis of mice. Toxicological Sciences 2009 112 450458. (https://doi.org/10.1093/toxsci/kfp204)

    • Search Google Scholar
    • Export Citation
  • 49

    Prathibha Y, Murugananthkumar R, Rajakumar A, Laldinsangi C, Sudhakumari CC, Mamta SK, Dutta-Gupta A & Senthilkumaran B Gene expression analysis in gonads and brain of catfish Clarias batrachus after the exposure of Malathion. Ecotoxicology and Environmental Safety 2014 102 210219. (https://doi.org/10.1016/j.ecoenv.2013.12.029)

    • Search Google Scholar
    • Export Citation
  • 50

    Jayachandra S & D’Souza UJ Prenatal and postnatal exposure to diazinon and its effect on spermatogram and pituitary gonadal hormones in male offspring of rats at puberty and adulthood. Journal of Environmental Science and Health: Part B, Pesticides, Food Contaminants, and Agricultural Wastes 2014 49 271278. (https://doi.org/10.1080/03601234.2014.868287)

    • Search Google Scholar
    • Export Citation
  • 51

    Wang Y, Dong Y, Wu S, Zhu Q, Li X, Liu S, Huang T, Li H & Ge RS Acephate interferes with androgen synthesis in rat immature Leydig cells. Chemosphere 2020 245 125597. (https://doi.org/10.1016/j.chemosphere.2019.125597)

    • Search Google Scholar
    • Export Citation
  • 52

    Yang FW, Fang B, Pang GF & Ren FZ Organophosphorus pesticide triazophos: a new endocrine disruptor chemical of hypothalamus-pituitary-adrenal axis. Pesticide Biochemistry and Physiology 2019 159 9197. (https://doi.org/10.1016/j.pestbp.2019.05.021)

    • Search Google Scholar
    • Export Citation
  • 53

    Omoike OE, Lewis RC & Meeker JD Association between urinary biomarkers of exposure to organophosphate insecticides and serum reproductive hormones in men from NHANES 1999–2002. Reproductive Toxicology 2015 53 99104. (https://doi.org/10.1016/j.reprotox.2015.04.005)

    • Search Google Scholar
    • Export Citation
  • 54

    Roca M, Miralles-Marco A, Ferré J, Pérez R & Yusà V Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain. Environmental Research 2014 131 7785. (https://doi.org/10.1016/j.envres.2014.02.009)

    • Search Google Scholar
    • Export Citation
  • 55

    Barr DB, Olsson AO, Wong LY, Udunka S, Baker SE, Whitehead RD, Magsumbol MS, Williams BL & Needham LL Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999–2002. Environmental Health Perspectives 2010 118 742748. (https://doi.org/10.1289/ehp.0901275)

    • Search Google Scholar
    • Export Citation
  • 56

    Panuwet P, Prapamontol T, Chantara S & Barr DB Urinary pesticide metabolites in school students from northern Thailand. International Journal of Hygiene and Environmental Health 2009 212 288297. (https://doi.org/10.1016/j.ijheh.2008.07.002)

    • Search Google Scholar
    • Export Citation
  • 57

    Moniz AC, Cruz-Casallas PE, Salzgeber SA, Varoli FMF, Spinosa HS & Bernardi MM Behavioral and endocrine changes induced by perinatal fenvalerate exposure in female rats. Neurotoxicology and Teratology 2005 27 609614. (https://doi.org/10.1016/j.ntt.2005.05.005)

    • Search Google Scholar
    • Export Citation
  • 58

    Pine MD, Hiney JK, Lee B & Dees WL The pyrethroid pesticide esfenvalerate suppresses the afternoon rise of luteinizing hormone and delays puberty in female rats. Environmental Health Perspectives 2008 116 12431247. (https://doi.org/10.1289/ehp.11119)

    • Search Google Scholar
    • Export Citation
  • 59

    Meeker JD, Barr DB & Hauser R Pyrethroid insecticide metabolites are associated with serum hormone levels in adult men. Reproductive Toxicology 2009 27 155160. (https://doi.org/10.1016/j.reprotox.2008.12.012)

    • Search Google Scholar
    • Export Citation
  • 60

    Han Y, Xia Y, Han J, Zhou J, Wang S, Zhu P, Zhao R, Jin N, Song L & Wang X The relationship of 3-PBA pyrethroids metabolite and male reproductive hormones among non-occupational exposure males. Chemosphere 2008 72 785790. (https://doi.org/10.1016/j.chemosphere.2008.03.058)

    • Search Google Scholar
    • Export Citation
  • 61

    Li H, Fang Y, Ni C, Chen X, Mo J, Lv Y, Chen Y, Chen X, Lian Q & Ge RS Lambda-cyhalothrin delays pubertal Leydig cell development in rats. Environmental Pollution 2018 242 709717. (https://doi.org/10.1016/j.envpol.2018.07.033)

    • Search Google Scholar
    • Export Citation
  • 62

    Ji C, Yu C, Yue S, Zhang Q, Yan Y, Fan J & Zhao M Enantioselectivity in endocrine disrupting effects of four cypermethrin enantiomers based on in vitro models. Chemosphere 2019 220 766773. (https://doi.org/10.1016/j.chemosphere.2018.12.158)

    • Search Google Scholar
    • Export Citation
  • 63

    Holloway AC, Anger DA, Crankshaw DJ, Wu M & Foster WG Atrazine-induced changes in aromatase activity in estrogen sensitive target tissues. Journal of Applied Toxicology 2008 28 260270. (https://doi.org/10.1002/jat.1275)

    • Search Google Scholar
    • Export Citation
  • 64

    Hernández AF, Gil F & Lacasaña M Toxicological interactions of pesticide mixtures: an update. Archives of Toxicology 2017 91 32113223. (https://doi.org/10.1007/s00204-017-2043-5)

    • Search Google Scholar
    • Export Citation
  • 65

    Oates L & Cohen M Assessing diet as a modifiable risk factor for pesticide exposure. International Journal of Environmental Research and Public Health 2011 8 17921804. (https://doi.org/10.3390/ijerph8061792)

    • Search Google Scholar
    • Export Citation
  • 66

    Winston JJ, Emch M, Meyer RE, Langlois P, Weyer P, Mosley B, Olshan AF, Band LE, Luben TJNational Birth Defects Prevention Study. Hypospadias and maternal exposure to atrazine via drinking water in the National Birth Defects Prevention study. Environmental Health 2016 15 76. (available at: https://pubmed.ncbi.nlm.nih.gov/27422386/) (https://doi.org/10.1186/s12940-016-0161-9)

    • Search Google Scholar
    • Export Citation
  • 67

    Curl CL, Fenske RA & Elgethum K Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environmental Health Perspectives 2003 111 377382. (https://doi.org/10.1289/ehp.5754)

    • Search Google Scholar
    • Export Citation
  • 68

    Day FR, Elks CE, Murray A, Ong KK & Perry JRB Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study. Scientific Reports 2015 5 11208. (available at: https://pubmed.ncbi.nlm.nih.gov/26084728/) (https://doi.org/10.1038/srep11208)

    • Search Google Scholar
    • Export Citation