Parathyroid hormone receptor stimulation induces human adipocyte lipolysis and browning

in European Journal of Endocrinology
View More View Less
  • 1 Steno Diabetes Center Aarhus and Department of Hormonal Disorders, Aarhus University Hospital, Aarhus, Denmark
  • 2 Department of Clinical Pharmacology, Aarhus University, Aarhus, Denmark
  • 3 Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
  • 4 Department of Biomedicine, Aarhus University, Aarhus, Denmark
  • 5 Department of Biology, University of Copenhagen, Copenhagen, Denmark

Correspondence should be addressed to P Breining; Email: peter.breining@clin.au.dk

Objective

Activation of brown adipose tissue is a promising strategy to treat and prevent obesity and obesity-related disorders. Activation of uncoupling protein 1 (UCP1) leads to uncoupled respiration and dissipation of stored energy as heat. Induction of UCP1-rich adipocytes in white adipose tissue, a process known as ‘browning’, serves as an alternative strategy to increase whole body uncoupling capacity. Here, we aim to assess the association between parathyroid hormone (PTH) receptor expression and UCP1 expression in human adipose tissues and to study PTH effects on human white and brown adipocyte lipolysis and UCP1 expression.

Design

A descriptive study of human neck adipose tissue biopsies substantiated by an interventional study on human neck-derived adipose tissue cell models.

Methods

Thermogenic markers and PTH receptor gene expression are assessed in human neck adipose tissue biopsies and are related to individual health records. PTH-initiated lipolysis and thermogenic gene induction are assessed in cultured human white and brown adipocyte cell models. PTH receptor involvement is investigated by PTH receptor silencing.

Results

PTH receptor gene expression correlates with UCP1 gene expression in the deep-neck adipose tissue in humans. In cell models, PTH receptor stimulation increases lipolysis and stimulates gene transcription of multiple thermogenic markers. Silencing of the PTH receptor attenuates the effects of PTH indicating a direct PTH effect via this receptor.

Conclusion

PTH 1 receptor stimulation by PTH may play a role in human adipose tissue metabolism by affecting lipolysis and thermogenic capacity.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 126 126 126
Full Text Views 17 17 17
PDF Downloads 29 29 29
  • 1

    Nedergaard J, Bengtsson T & Cannon B Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology. Endocrinology & Metabolism 2007 293 E444E452. (https://doi.org/10.1152/ajpendo.00691.2006)

    • Search Google Scholar
    • Export Citation
  • 2

    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P & Teule GJ Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 2009 360 15001508. (https://doi.org/10.1056/NEJMoa0808718)

    • Search Google Scholar
    • Export Citation
  • 3

    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH & Doria A et al. Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine 2009 360 15091517. (https://doi.org/10.1056/NEJMoa0810780)

    • Search Google Scholar
    • Export Citation
  • 4

    Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, Lidell ME, Saraf MK, Labbe SM & Hurren NM et al. Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014 63 40894099. (https://doi.org/10.2337/db14-0746)

    • Search Google Scholar
    • Export Citation
  • 5

    Kusminski CM, Bickel PE & Scherer PE Targeting adipose tissue in the treatment of obesity-associated diabetes. Nature Reviews. Drug Discovery 2016 15 639660. (https://doi.org/10.1038/nrd.2016.75)

    • Search Google Scholar
    • Export Citation
  • 6

    Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H & Saito M Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. International Journal of Obesity 2014 38 812817. (https://doi.org/10.1038/ijo.2013.206)

    • Search Google Scholar
    • Export Citation
  • 7

    Cannon B & Nedergaard J Brown adipose tissue: function and physiological significance. Physiological Reviews 2004 84 277359. (https://doi.org/10.1152/physrev.00015.2003)

    • Search Google Scholar
    • Export Citation
  • 8

    Bouillaud F, Ricquier D, Mory G & Thibault J Increased level of mRNA for the uncoupling protein in brown adipose tissue of rats during thermogenesis induced by cold exposure or norepinephrine infusion. Journal of Biological Chemistry 1984 259 1158311586. (https://doi.org/10.1016/S0021-9258(1890902-6)

    • Search Google Scholar
    • Export Citation
  • 9

    Inokuma K-I, Okamatsu-Ogura Y, Omachi A, Matsushita Y, Kimura K, Yamashita H & Saito M Indispensable role of mitochondrial UCP1 for antiobesity effect of β 3-adrenergic stimulation. American Journal of Physiology. Endocrinology & Metabolism 2006 290 E1014E1021. (https://doi.org/10.1152/ajpendo.00105.2005)

    • Search Google Scholar
    • Export Citation
  • 10

    Kalinovich AV, de Jong JM, Cannon B & Nedergaard J UCP1 in adipose tissues: two steps to full browning. Biochimie 2017 134 127137. (https://doi.org/10.1016/j.biochi.2017.01.007)

    • Search Google Scholar
    • Export Citation
  • 11

    Bartelt A & Heeren J Adipose tissue browning and metabolic health. Nature Reviews. Endocrinology 2014 10 2436. (https://doi.org/10.1038/nrendo.2013.204)

    • Search Google Scholar
    • Export Citation
  • 12

    Nedergaard J & Cannon B The browning of white adipose tissue: some burning issues. Cell Metabolism 2014 20 396407. (https://doi.org/10.1016/j.cmet.2014.07.005)

    • Search Google Scholar
    • Export Citation
  • 13

    Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS & Sze C et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Medicine 2013 19 635639. (https://doi.org/10.1038/nm.3112)

    • Search Google Scholar
    • Export Citation
  • 14

    Murholm M, Isidor MS, Basse AL, Winther S, Sørensen C, Skovgaard-Petersen J, Nielsen MM, Hansen AS, Quistorff B & Hansen JB Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. BMC Cell Biology 2013 14 41. (https://doi.org/10.1186/1471-2121-14-41)

    • Search Google Scholar
    • Export Citation
  • 15

    Zhang Q, Miao Q, Ye H, Zhang Z, Zuo C, Hua F, Guan Y & Li Y The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study. Diabetes/Metabolism Research & Reviews 2014 30 513520. (https://doi.org/10.1002/dmrr.2556)

    • Search Google Scholar
    • Export Citation
  • 16

    Markussen LK, Isidor MS, Breining P, Andersen ES, Rasmussen NE, Petersen LI, Pedersen SB, Richelsen B & Hansen JB Characterization of immortalized human brown and white pre-adipocyte cell models from a single donor. PLOS ONE 2017 12 e0185624. (https://doi.org/10.1371/journal.pone.0185624)

    • Search Google Scholar
    • Export Citation
  • 17

    Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE & Spiegelman BM Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 2014 513 100104. (https://doi.org/10.1038/nature13528).

    • Search Google Scholar
    • Export Citation
  • 18

    Kir S, Komaba H, Garcia AP, Economopoulos KP, Liu W, Lanske B, Hodin RA & Spiegelman BM PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metabolism 2016 23 315323. (https://doi.org/10.1016/j.cmet.2015.11.003)

    • Search Google Scholar
    • Export Citation
  • 19

    Juppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski LF Jr, Hock J, Potts JT Jr & Kronenberg HM AG protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 1991 254 10241026. (https://doi.org/10.1126/science.1658941)

    • Search Google Scholar
    • Export Citation
  • 20

    Bastepe M, Turan S & He Q Heterotrimeric G proteins in the control of parathyroid hormone actions. Journal of Molecular Endocrinology 2017 58 R203R224. (https://doi.org/10.1530/JME-16-0221)

    • Search Google Scholar
    • Export Citation
  • 21

    Taniguchi A, Kataoka K, Kono T, Oseko F, Okuda H, Nagata I & Imura H Parathyroid hormone-induced lipolysis in human adipose tissue. Journal of Lipid Research 1987 28 490494. (https://doi.org/10.1016/S0022-2275(2038677-6)

    • Search Google Scholar
    • Export Citation
  • 22

    Larsson S, Jones HA, Göransson O, Degerman E & Holm C Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase. Cellular Signalling 2016 28 204213. (https://doi.org/10.1016/j.cellsig.2015.12.012)

    • Search Google Scholar
    • Export Citation
  • 23

    Martin TJ Parathyroid hormone-related protein, its regulation of cartilage and bone development, and role in treating bone diseases. Physiological Reviews 2016 96 831871. (https://doi.org/10.1152/physrev.00031.2015)

    • Search Google Scholar
    • Export Citation
  • 24

    Silva BC & Bilezikian JP Parathyroid hormone: anabolic and catabolic actions on the skeleton. Current Opinion in Pharmacology 2015 22 4150. (https://doi.org/10.1016/j.coph.2015.03.005)

    • Search Google Scholar
    • Export Citation
  • 25

    Bianchi A, Bruce J, Cooper AL, Childs C, Kohli M, Morris ID, Morris-Jones P & Rothwell NJ Increased brown adipose tissue activity in children with malignant disease. Hormone & Metabolic Research 1989 21 640641. (https://doi.org/10.1055/s-2007-1009308)

    • Search Google Scholar
    • Export Citation
  • 26

    He Y, Liu RX, Zhu MT, Shen WB, Xie J, Zhang ZY, Chen N, Shan C, Guo XZ & Lu YD et al. The browning of white adipose tissue and body weight loss in primary hyperparathyroidism. EBiomedicine 2019 40 5666. (https://doi.org/10.1016/j.ebiom.2018.11.057)

    • Search Google Scholar
    • Export Citation
  • 27

    Cuppari L, de Carvalho AB, Avesani CM, Kamimura MA, dos Santos Lobão RR & Draibe SA Increased resting energy expenditure in hemodialysis patients with severe hyperparathyroidism. Journal of the American Society of Nephrology 2004 15 29332939. (https://doi.org/10.1097/01.ASN.0000141961.49723.BC)

    • Search Google Scholar
    • Export Citation
  • 28

    Gozariu L, Forster K, Faulhaber JD, Minne H & Ziegler R Parathyroid hormone and calcitonin: influences upon lipolysis of human adipose tissue. Hormone & Metabolic Research 1974 6 243245. (https://doi.org/10.1055/s-0028-1095713)

    • Search Google Scholar
    • Export Citation
  • 29

    Hedesan OC, Fenzl A, Digruber A, Spirk K, Baumgartner-Parzer S, Bilban M, Kenner L, Vierhapper M, Elbe-Burger A & Kiefer FW Parathyroid hormone induces a browning program in human white adipocytes. International Journal of Obesity 2019 43 13191324. (https://doi.org/10.1038/s41366-018-0266-z)

    • Search Google Scholar
    • Export Citation
  • 30

    Amisten S, Neville M, Hawkes R, Persaud SJ, Karpe F & Salehi A An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacology & Therapeutics 2015 146 6193. (https://doi.org/10.1016/j.pharmthera.2014.09.007)

    • Search Google Scholar
    • Export Citation
  • 31

    Breining P, Pedersen SB, Pikelis A, Rolighed L, Sundelin EIO, Jessen N & Richelsen B High expression of organic cation transporter 3 in human BAT-like adipocytes. Implications for extraneuronal norepinephrine uptake. Molecular & Cellular Endocrinology 2017 443 1522. (https://doi.org/10.1016/j.mce.2016.12.024)

    • Search Google Scholar
    • Export Citation
  • 32

    Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P, Loft A, de Jong J, Mathur N, Cannon B & Nedergaard J et al. A classical brown adipose tissue mRNA signature partly overlaps with Brite in the supraclavicular region of adult humans. Cell Metabolism 2013 17 798805. (https://doi.org/10.1016/j.cmet.2013.04.011)

    • Search Google Scholar
    • Export Citation
  • 33

    Patel KN & Shah JP Neck dissection: past, present, future. Surgical Oncology Clinics of North America 2005 14 46177, vi, vi. (https://doi.org/10.1016/j.soc.2005.04.003).

    • Search Google Scholar
    • Export Citation
  • 34

    Arvidsson S, Kwasniewski M, Riano-Pachon DM & Mueller-Roeber B QuantPrime: a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 2008 9 465. (https://doi.org/10.1186/1471-2105-9-465)

    • Search Google Scholar
    • Export Citation
  • 35

    Rogers W Regression standard errors in clustered samples. Stata Technical Bulletin 1994 3.

  • 36

    Froot KA Consistent covariance matrix estimation with cross-sectional dependence and heteroskedasticity in financial data. Journal of Financial & Quantitative Analysis 1989 24 333355. (https://doi.org/10.2307/2330815)

    • Search Google Scholar
    • Export Citation
  • 37

    Ježek P, Jabůrek M & Porter RK Uncoupling mechanism and redox regulation of mitochondrial uncoupling protein 1 (UCP1). Biochimica et Biophysica Acta-Bioenergetics 2019;1860 3 259269.

    • Search Google Scholar
    • Export Citation
  • 38

    Pickard BW, Hodsman AB, Fraher LJ & Watson PH Type 1 parathyroid hormone receptor (PTH1R) nuclear trafficking: association of PTH1R with importin α1 and β. Endocrinology 2006 147 33263332. (https://doi.org/10.1210/en.2005-1408)

    • Search Google Scholar
    • Export Citation
  • 39

    Watson PH, Fraher LJ, Natale BV, Kisiel M, Hendy GN & Hodsman AB Nuclear localization of the type 1 parathyroid hormone/parathyroid hormone-related peptide receptor in MC3T3-E1 cells: association with serum-induced cell proliferation. Bone 2000 26 221225. (https://doi.org/10.1016/s8756-3282(9900264-1)

    • Search Google Scholar
    • Export Citation
  • 40

    Garcia-Martin A, Ardura JA, Maycas M, Lozano D, Lopez-Herradon A, Portal-Nunez S, Garcia-Ocana A & Esbrit P Functional roles of the nuclear localization signal of parathyroid hormone-related protein (PTHrP) in osteoblastic cells. Molecular Endocrinology 2014 28 925934. (https://doi.org/10.1210/me.2013-1225)

    • Search Google Scholar
    • Export Citation
  • 41

    Pickard BW, Hodsman AB, Fraher LJ & Watson PH Type 1 parathyroid hormone receptor (PTH1R) nuclear trafficking: regulation of PTH1R nuclear-cytoplasmic shuttling by importin-α/β and chromosomal region maintenance 1/exportin. Endocrinology 2007 148 22822289. (https://doi.org/10.1210/en.2007-0157)

    • Search Google Scholar
    • Export Citation
  • 42

    Nedergaard J & Cannon B UCP1 mRNA does not produce heat. Biochimica & Biophysica Acta 2013 1831 943949. (https://doi.org/10.1016/j.bbalip.2013.01.009)

    • Search Google Scholar
    • Export Citation
  • 43

    Grill V, Murray RM, Ho PW, Santamaria JD, Pitt P, Potts C, Jerums G & Martin TJ Circulating PTH and PTHrP levels before and after treatment of tumor induced hypercalcemia with pamidronate disodium (APD). Journal of Clinical Endocrinology & Metabolism 1992 74 14681470. (https://doi.org/10.1210/jcem.74.6.1592895)

    • Search Google Scholar
    • Export Citation
  • 44

    Shiraki M, Sugimoto T & Nakamura T Effects of a single injection of teriparatide on bone turnover markers in postmenopausal women. Osteoporosis International 2013 24 219226. (https://doi.org/10.1007/s00198-012-2159-7)

    • Search Google Scholar
    • Export Citation
  • 45

    Bilezikian JP, Bandeira L, Khan A & Cusano NE Hyperparathyroidism. Lancet 2018 391 168178. (https://doi.org/10.1016/S0140-6736(1731430-7)

  • 46

    Mak RH, Bettinelli A, Turner C, Haycock GB & Chantler C The influence of hyperparathyroidism on glucose metabolism in uremia. Journal of Clinical Endocrinology & Metabolism 1985 60 229233. (https://doi.org/10.1210/jcem-60-2-229)

    • Search Google Scholar
    • Export Citation
  • 47

    Bolland MJ, Grey AB, Gamble GD & Reid IR Association between primary hyperparathyroidism and increased body weight: a meta-analysis. Journal of Clinical Endocrinology & Metabolism 2005 90 15251530. (https://doi.org/10.1210/jc.2004-1891)

    • Search Google Scholar
    • Export Citation