NTRK fusion analysis reveals enrichment in Middle Eastern BRAF wild-type PTC

in European Journal of Endocrinology
View More View Less
  • 1 Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
  • 2 Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
  • 3 Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

Correspondence should be addressed to K S Al-Kuraya; Email: kkuraya@kfshrc.edu.sa

*(Y Kong, R Bu, S K Parvathareddy and A K Siraj contributed equally to this work)

Restricted access

Objective

Fusions involving neurotrophic tyrosine receptor kinase (NTRK) are known oncogenic drivers in a broad range of tumor types. It recently gained attention as a predictor of targeted therapy since selective NTRK inhibitors are now approved in the US and Europe for patients with solid tumors harboring gene fusions. However, estimation of NTRK gene fusion/alteration frequency and its clinicopathological characteristics in papillary thyroid cancer (PTC) is limited, especially in a population with high incidence for PTC like Middle Eastern population. This study aims to characterize the NTRK gene fusion frequency and investigate the utility of pan-Trk immunohistochemistry (IHC) as predictor of NTRK fusion in a large cohort of Middle Eastern PTC.

Methods

FISH analysis for NTRK gene fusions and pan-Trk IHC was performed on 315 Middle Eastern PTCs. Correlation of NTRK gene fusion and protein expression with clinicopathological markers and patient outcome were determined.

Results

In our cohort, 6.0% (19/315) patients showed NTRK gene fusions and were significantly associated with pediatric PTC (P  = 0.0143), lymph node metastasis (P  = 0.0428) and BRAF WT tumors (P  < 0.0001). Pan-Trk IHC was positive in 9.2% (29/315) of cases and significantly associated with NTRK fusions, with a sensitivity of 73.7% and specificity of 94.9% in this cohort.

Conclusions

This study confirms the presence of NTRK fusions in Middle Eastern PTC which is significantly enriched in BRAF WT as well as pediatric age group and proposes the usefulness of IHC to screen for PTC patients with NTRK fusion that might benefit from TRK inhibitors.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 268 268 259
Full Text Views 24 24 24
PDF Downloads 33 33 33
  • 1

    Nakagawara A Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Letters 2001 169 107114. (https://doi.org/10.1016/s0304-3835(0100530-4)

    • Search Google Scholar
    • Export Citation
  • 2

    Stransky N, Cerami E, Schalm S, Kim JL & Lengauer C The landscape of kinase fusions in cancer. Nature Communications 2014 5 4846. (https://doi.org/10.1038/ncomms5846)

    • Search Google Scholar
    • Export Citation
  • 3

    Amatu A, Sartore-Bianchi A & Siena S NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016 1 e000023. (https://doi.org/10.1136/esmoopen-2015-000023)

    • Search Google Scholar
    • Export Citation
  • 4

    Gatalica Z, Xiu J, Swensen J & Vranic S Molecular characterization of cancers with NTRK gene fusions. Modern Pathology 2019 32 147153. (https://doi.org/10.1038/s41379-018-0118-3)

    • Search Google Scholar
    • Export Citation
  • 5

    Cocco E, Scaltriti M & Drilon A NTRK fusion-positive cancers and TRK inhibitor therapy. Nature Reviews: Clinical Oncology 2018 15 731747. (https://doi.org/10.1038/s41571-018-0113-0)

    • Search Google Scholar
    • Export Citation
  • 6

    Scott LJ Larotrectinib: first global approval. Drugs 2019 79 201206. (https://doi.org/10.1007/s40265-018-1044-x)

  • 7

    Al-Salama ZT & Keam SJ Entrectinib: first global approval. Drugs 2019 79 14771483. (https://doi.org/10.1007/s40265-019-01177-y)

  • 8

    Howlader N, Krapcho M, Miller D, Bishop K, Kosary C, Yu M, Cronin KA(eds). SEER Cancer Statistics Review, 1975–2014. Bethesda, MD: National Cancer Institute, 2017.

    • Search Google Scholar
    • Export Citation
  • 9

    Lim H, Devesa SS, Sosa JA, Check D & Kitahara CM Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA 2017 317 13381348. (https://doi.org/10.1001/jama.2017.2719)

    • Search Google Scholar
    • Export Citation
  • 10

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA & Jemal A Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018 68 394424. (https://doi.org/10.3322/caac.21492)

    • Search Google Scholar
    • Export Citation
  • 11

    La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F & Negri E Thyroid cancer mortality and incidence: a global overview. International Journal of Cancer 2015 136 21872195. (https://doi.org/10.1002/ijc.29251)

    • Search Google Scholar
    • Export Citation
  • 12

    Alrawaji A, Alshahrani Z, Alzahrani W, Alomran F, Almadouj A, Alshehri S, Alzahrani A, Bazarbashi S, Alhashmi H & Almutlaq H et al. Cancer incidence report Saudi Arabia 2015. In Saudi Cancer Registry. Ed Saudi Health Council. Riyadh, 2018.

    • Search Google Scholar
    • Export Citation
  • 13

    Ritter A, Mizrachi A, Bachar G, Vainer I, Shimon I, Hirsch D, Diker-Cohen T, Duskin-Bitan H & Robenshtok E Detecting recurrence following lobectomy for thyroid cancer: role of thyroglobulin and thyroglobulin antibodies. Journal of Clinical Endocrinology and Metabolism 2020 105 dgaa152. (https://doi.org/10.1210/clinem/dgaa152)

    • Search Google Scholar
    • Export Citation
  • 14

    Tumino D, Frasca F & Newbold K Updates on the management of advanced, metastatic, and radioiodine refractory differentiated thyroid cancer. Frontiers in Endocrinology 2017 8 312. (https://doi.org/10.3389/fendo.2017.00312)

    • Search Google Scholar
    • Export Citation
  • 15

    Farago AF, Taylor MS, Doebele RC, Zhu VW, Kummar S, Spira AI, Boyle TA, Haura EB, Arcila ME & Benayed R et al. Clinicopathologic features of non-small-cell lung cancer harboring an NTRK gene fusion. JCO Precision Oncology 2018 2 018 112. (https://doi.org/10.1200/PO.18.00037)

    • Search Google Scholar
    • Export Citation
  • 16

    Xu T, Wang H, Huang X, Li W, Huang Q, Yan Y & Chen J Gene fusion in malignant glioma: an emerging target for next-generation personalized treatment. Translational Oncology 2018 11 609618. (https://doi.org/10.1016/j.tranon.2018.02.020)

    • Search Google Scholar
    • Export Citation
  • 17

    Pietrantonio F, Di Nicolantonio F, Schrock AB, Lee J, Tejpar S, Sartore-Bianchi A, Hechtman JF, Christiansen J, Novara L & Tebbutt N et al. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. Journal of the National Cancer Institute 2017 109 djx089. (https://doi.org/10.1093/jnci/djx089)

    • Search Google Scholar
    • Export Citation
  • 18

    Lezcano C, Shoushtari AN, Ariyan C, Hollmann TJ & Busam KJ Primary and metastatic melanoma with NTRK-Fusions. American Journal of Surgical Pathology 2018 42 1052–1058. (https://doi.org/10.1097/PAS.0000000000001070)

    • Search Google Scholar
    • Export Citation
  • 19

    Chiang S, Cotzia P, Hyman DM, Drilon A, Tap WD, Zhang L, Hechtman JF, Frosina D, Jungbluth AA & Murali R et al. NTRK fusions define a novel uterine sarcoma subtype with features of fibrosarcoma. American Journal of Surgical Pathology 2018 42 791–798. (https://doi.org/10.1097/PAS.0000000000001055)

    • Search Google Scholar
    • Export Citation
  • 20

    Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, Tallini G, Nikiforova MN, Christison-Lagay ER & Udelsman R et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer 2016 122 10971107. (https://doi.org/10.1002/cncr.29887)

    • Search Google Scholar
    • Export Citation
  • 21

    Okamura R, Boichard A, Kato S, Sicklick JK, Bazhenova L & Kurzrock R Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precision Oncology 2018 2 018 120. (https://doi.org/10.1200/PO.18.00183)

    • Search Google Scholar
    • Export Citation
  • 22

    Marchiò C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F, Dietel M, Hechtman JF, Troiani T, López-Rios F & Douillard JY et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Annals of Oncology 2019 30 14171427. (https://doi.org/10.1093/annonc/mdz204)

    • Search Google Scholar
    • Export Citation
  • 23

    Wong D, Yip S & Sorensen PH Methods for identifying patients with tropomyosin receptor kinase (TRK) fusion cancer. Pathology Oncology Research 2020 26 13851399. (https://doi.org/10.1007/s12253-019-00685-2)

    • Search Google Scholar
    • Export Citation
  • 24

    Rudzinski ER, Lockwood CM, Stohr BA, Vargas SO, Sheridan R, Black JO, Rajaram V, Laetsch TW & Davis JL Pan-Trk immunohistochemistry identifies NTRK rearrangements in pediatric mesenchymal tumors. American Journal of Surgical Pathology 2018 42 927935. (https://doi.org/10.1097/PAS.0000000000001062)

    • Search Google Scholar
    • Export Citation
  • 25

    Xu B, Haroon Al Rasheed MR, Antonescu CR, Alex D, Frosina D, Ghossein R, Jungbluth AA & Katabi N Pan-Trk immunohistochemistry is a sensitive and specific ancillary tool for diagnosing secretory carcinoma of the salivary gland and detecting ETV6–NTRK3 fusion. Histopathology 2020 76 375382. (https://doi.org/10.1111/his.13981)

    • Search Google Scholar
    • Export Citation
  • 26

    Solomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D, Jungbluth AA, Zehir A, Benayed R & Drilon A et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Modern Pathology 2020 33 3846. (https://doi.org/10.1038/s41379-019-0324-7)

    • Search Google Scholar
    • Export Citation
  • 27

    Abubaker J, Jehan Z, Bavi P, Sultana M, Al-Harbi S, Ibrahim M, Al-Nuaim A, Ahmed M, Amin T & Al-Fehaily M et al. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. Journal of Clinical Endocrinology and Metabolism 2008 93 611618. (https://doi.org/10.1210/jc.2007-1717)

    • Search Google Scholar
    • Export Citation
  • 28

    Bu R, Siraj AK, Al-Obaisi KA, Beg S, Al Hazmi M, Ajarim D, Tulbah A, Al-Dayel F & Al-Kuraya KS Identification of novel BRCA founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis. International Journal of Cancer 2016 139 10911097. (https://doi.org/10.1002/ijc.30143).

    • Search Google Scholar
    • Export Citation
  • 29

    Siraj AK, Bavi P, Abubaker J, Jehan Z, Sultana M, Al-Dayel F, Al-Nuaim A, Alzahrani A, Ahmed M & Al-Sanea O et al. Genome-wide expression analysis of Middle Eastern papillary thyroid cancer reveals c-MET as a novel target for cancer therapy. Journal of Pathology 2007 213 190199. (https://doi.org/10.1002/path.2215)

    • Search Google Scholar
    • Export Citation
  • 30

    Siraj AK, Beg S, Jehan Z, Prabhakaran S, Ahmed M, Hussain AR, Al-Dayel F, Tulbah A & Ajarim D Al-Kuraya KS et al. ALK alteration is a frequent event in aggressive breast cancers. Breast Cancer Research 2015 17 112. (https://doi.org/10.1186/s13058-015-0610-3)

    • Search Google Scholar
    • Export Citation
  • 31

    Bavi P, Jehan Z, Atizado V, Al-Dossari H, Al-Dayel F, Tulbah A, Amr SS, Sheikh SS, Ezzat A & El-Solh H et al. Prevalence of fragile histidine triad expression in tumors from Saudi Arabia: a tissue microarray analysis. Cancer Epidemiology, Biomarkers and Prevention 2006 15 17081718. (https://doi.org/10.1158/1055-9965.EPI-05-0972)

    • Search Google Scholar
    • Export Citation
  • 32

    Lee YC, Chen JY, Huang CJ, Chen HS, Yang AH & Hang JF Detection of NTRK1/3 rearrangements in papillary thyroid carcinoma using immunohistochemistry, fluorescent in situ hybridization, and next-generation sequencing. Endocrine Pathology 2020 31 348358. (https://doi.org/10.1007/s12022-020-09648-9)

    • Search Google Scholar
    • Export Citation
  • 33

    Lan X, Bao H, Ge X, Cao J, Fan X, Zhang Q, Liu K, Zhang X, Tan Z & Zheng C et al. Genomic landscape of metastatic papillary thyroid carcinoma and novel biomarkers for predicting distant metastasis. Cancer Science 2020 111 21632173. (https://doi.org/10.1111/cas.14389)

    • Search Google Scholar
    • Export Citation
  • 34

    Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, Song YS, Cho SW, Won JK & Shin JY et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genetics 2016 12 e1006239. (https://doi.org/10.1371/journal.pgen.1006239)

    • Search Google Scholar
    • Export Citation
  • 35

    Morano F, Corallo S, Lonardi S, Raimondi A, Cremolini C, Rimassa L, Murialdo R, Zaniboni A, Sartore-Bianchi A & Tomasello G et al. Negative hyperselection of patients with RAS and BRAF wild-type metastatic colorectal cancer who received panitumumab-based maintenance therapy. Journal of Clinical Oncology 2019 37 30993110. (https://doi.org/10.1200/JCO.19.01254)

    • Search Google Scholar
    • Export Citation
  • 36

    Cocco E, Benhamida J, Middha S, Zehir A, Mullaney K, Shia J, Yaeger R, Zhang L, Wong D & Villafania L et al. Colorectal carcinomas containing hypermethylated MLH1 promoter and wild-type BRAF/KRAS are enriched for targetable kinase fusions. Cancer Research 2019 79 10471053. (https://doi.org/10.1158/0008-5472.CAN-18-3126)

    • Search Google Scholar
    • Export Citation
  • 37

    Chu YH, Dias-Santagata D, Farahani AA, Boyraz B, Faquin WC, Nosé V & Sadow PM Clinicopathologic and molecular characterization of NTRK-rearranged thyroid carcinoma (NRTC). Modern Pathology 2020 33 21862197. (https://doi.org/10.1038/s41379-020-0574-4)

    • Search Google Scholar
    • Export Citation