Imaging cerebral microbleeds in Cushing’s disease evaluated by quantitative susceptibility mapping: an observational cross-sectional study

in European Journal of Endocrinology
View More View Less
  • 1 Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
  • 2 Department of Neurosurgery, Rui-Jin Lu-Wan Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
  • 3 Department of Radiology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
  • 4 Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China

Correspondence should be addressed to L Bian; Email: bianliuguan11118@163.com

*(H Jiang and W Yang contributed equally to this work and are joint first authors)

(L Bian and H wei contributed equaly as senior authors)

Restricted access

Design

Cushing’s disease (CD) is a rare clinical syndrome characterized by chronic exposure to hypercortisolism due to an adrenocorticotropic hormone-secreting pituitary adenoma. The adverse effects of chronic exposure to hypercortisolism on the human brain remain unclear. The purpose of this study was to assess the prevalence of cerebral microbleeds (CMBs) in CD patients and their associations with clinical characteristics.

Methods

In this study, 48 active CD patients, 39 remitted CD patients, and 52 healthy control (HC) subjects underwent MRI. CD patients also underwent neuropsychological testing and clinical examinations. The number, locations, and volumes of CMBs were assessed on quantitative susceptibility mapping (QSM) images and with the Microbleed Anatomical Rating Scale. The correlation between CMBs and clinical characteristics was explored.

Results

The prevalence of CMBs among active and remitted CD patients was higher than that among HCs (16.3%, 20.5%, and 3.3%, respectively). Moreover, the age of CD patients with CMBs were much younger than HCs with CMBs. Furthermore, the increased number of CMBs in active CD patients was associated with increased cerebrospinal fluid (CSF) volumes in remitted CD patients.

Conclusions

Chronic exposure to hypercortisolism may be relevant to CMBs and significantly correlated with altered brain volumes in CD.

Supplementary Materials

    • Table S1 Demographics and clinical characteristics of study patients and healthy control subjects under 60years old
    • Table S2 Demographics and clinical characteristics of sub-groups of aCD
    • Table S3 Correlations between CMBs and the other risk factors in active CD and remitted CD patients

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 339 339 339
Full Text Views 52 52 52
PDF Downloads 53 53 53
  • 1

    Fogelman N & Canli T Early life stress and cortisol: a meta-analysis. Hormones and Behavior 2018 98 6376. (https://doi.org/10.1016/j.yhbeh.2017.12.014)

    • Search Google Scholar
    • Export Citation
  • 2

    Andela CD, Van Haalen FM, Ragnarsson O, Papakokkinou E, Johannsson G, Santos A, Webb SM, Biermasz NR, Van Der Wee NJA & Pereira AM MECHANISMS IN ENDOCRINOLOGY: Cushing’s syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. European Journal of Endocrinology 2015 173 R1R14. (https://doi.org/10.1530/EJE-14-1101)

    • Search Google Scholar
    • Export Citation
  • 3

    De Martin M, Pecori Giraldi F & Cavagnini F Cushing’s disease. Pituitary 2006 9 279287. (https://doi.org/10.1007/s11102-006-0407-6)

  • 4

    Khiat A, Bard C, Lacroix A & Boulanger Y Recovery of the brain choline level in treated Cushing’s patients as monitored by proton magnetic resonance spectroscopy. Brain Research 2000 862 301307. (https://doi.org/10.1016/S0006-8993(0002147-8)

    • Search Google Scholar
    • Export Citation
  • 5

    Jiang H, He NY, Sun YH, Jian FF, Bian LG, Shen JK, Yan FH, Pan SJ & Sun QF Altered gray and white matter microstructure in Cushing’s disease: a diffusional kurtosis imaging study. Brain Research 2017 1665 8087. (https://doi.org/10.1016/j.brainres.2017.04.007)

    • Search Google Scholar
    • Export Citation
  • 6

    Jiang H, Ren J, He NY, Liu C, Sun YH, Jian FF, Bian LG, Shen JK, Yan FH, Pan SJet al. Volumetric magnetic resonance imaging analysis in patients with short-term remission of Cushing’s disease. Clinical Endocrinology 2017 87 367374. (https://doi.org/10.1111/cen.13381)

    • Search Google Scholar
    • Export Citation
  • 7

    Ragnarsson O, Stomby A, Dahlqvist P, Evang JA, Ryberg M, Olsson T, Bollerslev J, Nyberg L & Johannsson G Decreased prefrontal functional brain response during memory testing in women with Cushing’s syndrome in remission. Psychoneuroendocrinology 2017 82 117125. (https://doi.org/10.1016/j.psyneuen.2017.05.010)

    • Search Google Scholar
    • Export Citation
  • 8

    Stomby A, Salami A, Dahlqvist P, Evang JA, Ryberg M, Bollerslev J, Olsson T, Johannsson G & Ragnarsson O Elevated resting-state connectivity in the medial temporal lobe and the prefrontal cortex among patients with Cushing’s syndrome in remission. European Journal of Endocrinology 2019 180 329338. (https://doi.org/10.1530/EJE-19-0028)

    • Search Google Scholar
    • Export Citation
  • 9

    Wang X, Zhou T, Wang P, Zhang L, Feng S, Meng X, Yu X & Zhang Y Dysregulation of resting-state functional connectivity in patients with Cushing’s disease. Neuroradiology 2019 61 911920. (https://doi.org/10.1007/s00234-019-02223-y)

    • Search Google Scholar
    • Export Citation
  • 10

    Bas-Hoogendam JM, Andela CD, Werff SJA, van der, Pannekoek JN, Steenbergen H, van, Meijer OC, Buchem MA, van, Rombouts SARB, Mast RC, van der & Biermasz NR et al. Altered neural processing of emotional faces in remitted Cushing’s disease. Psychoneuroendocrinology 2015 59 134146. (https://doi.org/10.1016/j.psyneuen.2015.05.001)

    • Search Google Scholar
    • Export Citation
  • 11

    van der Werff SJ, Pannekoek JN, Andela CD, Meijer OC, Buchem MA, Van, Rombouts SARB, Mast Van Der RC, Biermasz NR, Pereira AM & Wee Van Der NJA Resting-state functional connectivity in patients with long-term remission of Cushing’s disease. Neuropsychopharmacology 2015 40 18881898. (https://doi.org/10.1038/npp.2015.38)

    • Search Google Scholar
    • Export Citation
  • 12

    Burkhardt T, Lüdecke D, Spies L, Wittmann L, Westphal M & Flitsch J Hippocampal and cerebellar atrophy in patients with Cushing’s disease. Neurosurgical Focus 2015 39 E5. (https://doi.org/10.3171/2015.8.FOCUS15324)

    • Search Google Scholar
    • Export Citation
  • 13

    Van Der Werff SJA, Andela CD, Nienke Pannekoek J, Meijer OC, Van Buchem MA, Rombouts SARB, Van Der Mast RC, Biermasz NR, Pereira AM & Van Der Wee NJA Widespread reductions of white matter integrity in patients with long-term remission of Cushing’s disease. NeuroImage. Clinical 2014 4 659667. (https://doi.org/10.1016/j.nicl.2014.01.017)

    • Search Google Scholar
    • Export Citation
  • 14

    Andela CD, van der Werff SJ, Pannekoek JN, van den Berg SM, Meijer OC, van Buchem MA, Rombouts SA, van der Mast RC, Romijn JA & Tiemensma J et al. Smaller grey matter volumes in the anterior cingulate cortex and greater cerebellar volumes in Patients with long-term remission of Cushing’s disease: a case-control study. European Journal of Endocrinology 2013 169 811819. (https://doi.org/10.1530/EJE-13-0471)

    • Search Google Scholar
    • Export Citation
  • 15

    Zivadinov R, Ramasamy DP, Benedict RRH, Polak P, Hagemeier J, Magnano C, Dwyer MG, Bergsland N, Bertolino N & Weinstock-Guttman B et al. Cerebral microbleeds in multiple sclerosis evaluated on susceptibility-weighted images and quantitative susceptibility maps: a case-control study. Radiology 2016 281 884895. (https://doi.org/10.1148/radiol.2016160060)

    • Search Google Scholar
    • Export Citation
  • 16

    Shams S, Martola J, Granberg T, Li X, Shams M, Fereshtehnejad SM, Cavallin L, Aspelin P, Kristoffersen-Wiberg M & Wahlund LO Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis-the Karolinska imaging dementia study. American Journal of Neuroradiology 2015 36 661666. (https://doi.org/10.3174/ajnr.A4176)

    • Search Google Scholar
    • Export Citation
  • 17

    Newell-Price J, Bertagna X, Grossman AB & Nieman LK Cushing’s syndrome. Lancet 2006 367 16051617. (https://doi.org/10.1016/S0140-6736(0668699-6)

    • Search Google Scholar
    • Export Citation
  • 18

    Vernooij MW, Van Der A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP & Breteler MMB Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008 70 12081214. (https://doi.org/10.1212/01.wnl.0000307750.41970.d9)

    • Search Google Scholar
    • Export Citation
  • 19

    Caunca MR, Brutto V, Gardener H, Shah N, Dequatre-Ponchelle N, Cheung YK, Elkind MSV, Brown TR, Cordonnier C & Sacco RL et al. Cerebral microbleeds, vascular risk factors, and magnetic resonance imaging markers: the northern manhattan study. Journal of the American Heart Association 2016 5 16. (https://doi.org/10.1161/JAHA.116.003477)

    • Search Google Scholar
    • Export Citation
  • 20

    Trethowan WH & Cobb S Neuropsychiatric aspects of Cushing’s syndrome. AMA Archives of Neurology and Psychiatry 1952 67 283309. (https://doi.org/10.1001/archneurpsyc.1952.02320150016002)

    • Search Google Scholar
    • Export Citation
  • 21

    Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA & Schteingart DE Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biological Psychiatry 1999 46 15951602. (https://doi.org/10.1016/S0006-3223(9900203-6)

    • Search Google Scholar
    • Export Citation
  • 22

    Starkman MN, Giordani B, Gebarski SS & Schteingart DE Improvement in learning associated with increase in hippocampal formation volume. Biological Psychiatry 2003 53 233238. (https://doi.org/10.1016/s0006-3223(0201750-x)

    • Search Google Scholar
    • Export Citation
  • 23

    Jiang H, Liu C, Pan SJ, Ren J, He NY, Sun YH, Bian LG, Yan FH, Yang WJ & Sun QF Reversible and the irreversible structural alterations on brain after resolution of hypercortisolism in Cushing’s disease. Steroids 2019 151 108457. (https://doi.org/10.1016/j.steroids.2019.108457)

    • Search Google Scholar
    • Export Citation
  • 24

    Biller BMK, Grossman AB, Stewart PM, Melmed S, Bertagna X, Bertherat J, Buchfelder M, Colao A, Hermus AR & Hofland LJ et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. Journal of Clinical Endocrinology and Metabolism 2008 93 24542462. (https://doi.org/10.1210/jc.2007-2734)

    • Search Google Scholar
    • Export Citation
  • 25

    Hamilton M A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry 1960 23 5662. (https://doi.org/10.1136/jnnp.23.1.56)

    • Search Google Scholar
    • Export Citation
  • 26

    Hamilton M The assessment of anxiety states by rating. British Journal of Medical Psychology 1959 32 5055. (https://doi.org/10.1111/j.2044-8341.1959.tb00467.x)

    • Search Google Scholar
    • Export Citation
  • 27

    Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL & Chertkow H The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society 2005 53 695699. (https://doi.org/10.1111/j.1532-5415.2005.53221.x)

    • Search Google Scholar
    • Export Citation
  • 28

    Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW & Smith SM Fsl. Neuroimage 2012 62 782790. (https://doi.org/10.1016/j.neuroimage.2011.09.015)

  • 29

    Schofield MA & Zhu Y Fast phase unwrapping algorithm for interferometric applications. Optics Letters 2003 28 1194–1196. (https://doi.org/10.1364/ol.28.001194)

    • Search Google Scholar
    • Export Citation
  • 30

    Schweser F, Deistung A, Lehr BW & Reichenbach JR Quantitative imaging of intrinsic magnetic tissue properties using {MRI} signal phase: an approach to in vivo brain iron metabolism? NeuroImage 2011 54 27892807. (https://doi.org/10.1016/j.neuroimage.2010.10.070)

    • Search Google Scholar
    • Export Citation
  • 31

    Wei H, Dibb R, Zhou Y, Sun Y, Xu J, Wang N & Liu C Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR in Biomedicine 2015 28 12941303. (https://doi.org/10.1002/nbm.3383)

    • Search Google Scholar
    • Export Citation
  • 32

    Gregoire S, Chauchary U, Jager R, Brown M, Yousry T & Werring D The microbleed anatomical rating scale (mars): a new reliable scale with good intra- and inter-observer agreement for mapping brain microbleeds. In Stroke, Vol. 40, pp. E227E227. Lippincott Williams & Wilkins, 2009.

    • Search Google Scholar
    • Export Citation
  • 33

    Ding J, Sigurdsson S, Garcia M, Phillips CL, Eiriksdottir G, Gudnason V, Buchem Van MA & Launer LJ Risk factors associated with incident cerebral microbleeds according to location in older people: the age, gene/environment susceptibility (AGES)-Reykjavik study. JAMA Neurology 2015 72 682688. (https://doi.org/10.1001/jamaneurol.2015.0174)

    • Search Google Scholar
    • Export Citation
  • 34

    Bauduin SEEC, Wee Van Der NJA & Van Der SJA Structural brain abnormalities in Cushing’s syndrome. Current Opinion in Endocrinology, Diabetes, and Obesity 2018 25 285289. (https://doi.org/10.1097/MED.0000000000000414)

    • Search Google Scholar
    • Export Citation
  • 35

    Pires P, Santos A, Vives-Gilabert Y, Webb SM, Sainz-Ruiz A, Resmini E, Crespo I, Juan-Delago De M & Gómez-Ansón B White matter alterations in the brains of patients with active, remitted, and cured Cushing syndrome: a DTI study. American Journal of Neuroradiology 2015 36 10431048. (https://doi.org/10.3174/ajnr.A4322)

    • Search Google Scholar
    • Export Citation
  • 36

    Gao L, Liu L, Shi L, Luo Y, Wang Z, Guo X & Xing B Dynamic changes of views on the brain changes of Cushing’s syndrome using different computer-assisted tool. Reviews in Endocrine and Metabolic Disorders 2020 21 185200. (https://doi.org/10.1007/s11154-020-09540-1)

    • Search Google Scholar
    • Export Citation
  • 37

    Hou B, Gao L, Shi L, Luo Y, Guo X, Young GS, Qin L, Zhu H, Lu L & Wang Z et al. Reversibility of impaired brain structures after transsphenoidal surgery in Cushing’s disease: a longitudinal study based on an artificial intelligence-assisted tool. Journal of Neurosurgery 2020 110. (https://doi.org/10.3171/2019.10.JNS191400)

    • Search Google Scholar
    • Export Citation