MCM7 as a marker of postsurgical progression in non-functioning pituitary adenomas

in European Journal of Endocrinology
View More View Less
  • 1 Department of Neurosurgery, Sahlgrenska University Hospital
  • 2 Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
  • 3 Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
  • 4 Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
  • 5 Unilabs Pathology Sweden AB, Department of Pathology and Cytology, Skaraborgs Hospital, Skövde, Sweden
  • 6 Department of Neuroradiology, Sahlgrenska University Hospital, Gothenburg, Sweden

Correspondence should be addressed to T Hallén; Email: tobias.hallen@vgregion.se
Restricted access

Objective

Current markers predicting tumour progression of pituitary adenomas after surgery are insufficient. Our objective was to investigate if minichromosome maintenance protein 7 (MCM7) expression predicts tumour progression in non-functioning pituitary adenomas (NFPAs).

Methods

In a cohort study of surgically treated NFPAs, two groups with distinctly different behaviour of a residual tumour were selected: one group requiring reintervention due to tumour progression (reintervention group, n  = 57) and one with residual tumours without progression (radiologically stable group, n  = 40). MCM7, Ki-67, oestrogen receptor-α expression, mitotic index and tumour subtype were assessed by immunohistochemistry, and their association with tumour progression requiring reintervention was analysed.

Results

Median (IQR) MCM7 expression was 7.4% (2.4–15.2) in the reintervention group compared with 2.0% (0.6–5.3) in the radiologically stable group (P <0.0001). Cox regression analysis showed an association between high (>13%) MCM7 expression and reintervention (HR: 3.1; 95% CI:1.7–5.4; P  = 0.00012). The probability for reintervention within 6 years for patients with high MCM7 was 93%. Ki-67 expression >3% (P = 0.00062), age ≤55 years (P  = 0.00034) and mitotic index≥1 (P = 0.024) were also associated with reintervention. Using a receiver operating characteristics curve, a predictive model for reintervention with all the above predictors yielded an area under the curve of 82%. All eight patients with both high MCM7 and high Ki-67 needed reintervention.

Conclusion

This cohort study shows that expression of MCM7 is a predictor for clinically significant postoperative tumour progression. Together with age, Ki-67 and mitotic index, MCM7 might be of added value as a predictive marker when managing patients with NFPA after surgery.

Supplementary Materials

    • Supplementary Figure 1

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 306 306 244
Full Text Views 40 40 36
PDF Downloads 50 50 47
  • 1

    Raverot G, Dantony E, Beauvy J, Vasiljevic A, Mikolasek S, Borson-Chazot F, Jouanneau E, Roy P & Trouillas J Risk of recurrence in pituitary neuroendocrine tumors: a prospective study using a five-tiered classification. Journal of Clinical Endocrinology and Metabolism 2017 102 33683374. (https://doi.org/10.1210/jc.2017-00773)

    • Search Google Scholar
    • Export Citation
  • 2

    Trouillas J, Roy P, Sturm N, Dantony E, Cortet-Rudelli C, Viennet G, Bonneville JF, Assaker R, Auger C & Brue T et al. A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathologica 2013 126 123135. (https://doi.org/10.1007/s00401-013-1084-y)

    • Search Google Scholar
    • Export Citation
  • 3

    Yu SY, Du Q, Yao SY, Zhang KN, Wang J, Zhu Z & Jiang XB Outcomes of endoscopic and microscopic transsphenoidal surgery on non-functioning pituitary adenomas: a systematic review and meta-analysis. Journal of Cellular and Molecular Medicine 2018 22 20232027. (https://doi.org/10.1111/jcmm.13445)

    • Search Google Scholar
    • Export Citation
  • 4

    Losa M, Mortini P, Barzaghi R, Ribotto P, Terreni MR, Marzoli SB, Pieralli S & Giovanelli M Early results of surgery in patients with nonfunctioning pituitary adenoma and analysis of the risk of tumor recurrence. Journal of Neurosurgery 2008 108 525532. (https://doi.org/10.3171/JNS/2008/108/3/0525)

    • Search Google Scholar
    • Export Citation
  • 5

    Tampourlou M, Ntali G, Ahmed S, Arlt W, Ayuk J, Byrne JV, Chavda S, Cudlip S, Gittoes N & Grossman A et al. Outcome of nonfunctioning pituitary adenomas that regrow after primary treatment: a study from two large UK centers. Journal of Clinical Endocrinology and Metabolism 2017 102 18891897. (https://doi.org/10.1210/jc.2016-4061)

    • Search Google Scholar
    • Export Citation
  • 6

    Zhang X, Fei Z, Zhang J, Fu L, Zhang Z, Liu W & Chen Y Management of nonfunctioning pituitary adenomas with suprasellar extensions by transsphenoidal microsurgery. Surgical Neurology 1999 52 380385. (https://doi.org/10.1016/s0090-3019(9900120-2)

    • Search Google Scholar
    • Export Citation
  • 7

    Righi A, Agati P, Sisto A, Frank G, Faustini-Fustini M, Agati R, Mazzatenta D, Farnedi A, Menetti F & Marucci G et al. A classification tree approach for pituitary adenomas. Human Pathology 2012 43 16271637. (https://doi.org/10.1016/j.humpath.2011.12.003)

    • Search Google Scholar
    • Export Citation
  • 8

    Chen Y, Wang CD, Su ZP, Chen YX, Cai L, Zhuge QC & Wu ZB Natural history of postoperative nonfunctioning pituitary adenomas: a systematic review and meta-analysis. Neuroendocrinology 2012 96 333342. (https://doi.org/10.1159/000339823)

    • Search Google Scholar
    • Export Citation
  • 9

    Dekkers OM, Pereira AM & Romijn JA Treatment and follow-up of clinically nonfunctioning pituitary macroadenomas. Journal of Clinical Endocrinology and Metabolism 2008 93 37173726. (https://doi.org/10.1210/jc.2008-0643)

    • Search Google Scholar
    • Export Citation
  • 10

    O'Sullivan EP, Woods C, Glynn N, Behan LA, Crowley R, O'Kelly P, Smith D, Thompson CJ & Agha A The natural history of surgically treated but radiotherapy-naive nonfunctioning pituitary adenomas. Clinical Endocrinology 2009 71 709714. (https://doi.org/10.1111/j.1365-2265.2009.03583.x)

    • Search Google Scholar
    • Export Citation
  • 11

    Raverot G, Vasiljevic A & Jouanneau E Prognostic factors of regrowth in nonfunctioning pituitary tumors. Pituitary 2018 21 176182. (https://doi.org/10.1007/s11102-017-0861-3)

    • Search Google Scholar
    • Export Citation
  • 12

    Øystese KA, Evang JA & Bollerslev J Non-functioning pituitary adenomas: growth and aggressiveness. Endocrine 2016 53 2834. (https://doi.org/10.1007/s12020-016-0940-7)

    • Search Google Scholar
    • Export Citation
  • 13

    DeLellis RA, Lloyd RV, Heitz PU, Eng C (Eds). Pathology and Genetics: World Health Organization Classification of Tumours of Endocrine Organs. Lyon: IARC, 2004.

    • Search Google Scholar
    • Export Citation
  • 14

    Hadzhiyanev A, Ivanova R, Nachev E, Elenkova A, Yaneva M, Zaharieva S, Marinov M, Surchev J & Ivanova A Evaluation of prognostic utility of MIB-1 and p53 expression in pituitary adenomas: correlations with clinical behaviour and follow-up results. Biotechnology, Biotechnological Equipment 2014 28 502507. (https://doi.org/10.1080/13102818.2014.932510)

    • Search Google Scholar
    • Export Citation
  • 15

    Sav A, Rotondo F, Syro LV, Scheithauer BW & Kovacs K Biomarkers of pituitary neoplasms. Anticancer Research 2012 32 46394654.

  • 16

    Zaidi HA, Cote DJ, Dunn IF & Laws ER Predictors of aggressive clinical phenotype among immunohistochemically confirmed atypical adenomas. Journal of Clinical Neuroscience 2016 34 246251. (https://doi.org/10.1016/j.jocn.2016.09.014)

    • Search Google Scholar
    • Export Citation
  • 17

    Lopes MBS The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathologica 2017 134 521535. (https://doi.org/10.1007/s00401-017-1769-8)

    • Search Google Scholar
    • Export Citation
  • 18

    Laws ER, Penn DL & Repetti CS Advances and controversies in the classification and grading of pituitary tumors. Journal of Endocrinological Investigation 2019 42 129135. (https://doi.org/10.1007/s40618-018-0901-5)

    • Search Google Scholar
    • Export Citation
  • 19

    Tye BK MCM proteins in DNA replication. Annual Review of Biochemistry 1999 68 649686. (https://doi.org/10.1146/annurev.biochem.68.1.649)

    • Search Google Scholar
    • Export Citation
  • 20

    Erkan EP, Ströbel T, Lewandrowski G, Tannous B, Madlener S, Czech T, Saydam N & Saydam O Depletion of minichromosome maintenance protein 7 inhibits glioblastoma multiforme tumor growth in vivo. Oncogene 2014 33 47784785. (https://doi.org/10.1038/onc.2013.423)

    • Search Google Scholar
    • Export Citation
  • 21

    Saydam O, Senol O, Schaaij-Visser TBM, Pham TV, Piersma SR, Stemmer-Rachamimov AO, Wurdinger T, Peerdeman SM & Jimenez CR Comparative protein profiling reveals minichromosome maintenance (MCM) proteins as novel potential tumor markers for meningiomas. Journal of Proteome Research 2010 9 485494. (https://doi.org/10.1021/pr900834h)

    • Search Google Scholar
    • Export Citation
  • 22

    Ren B, Yu G, Tseng GC, Cieply K, Gavel T, Nelson J, Michalopoulos G, Yu YP & Luo JH MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene 2006 25 10901098. (https://doi.org/10.1038/sj.onc.1209134)

    • Search Google Scholar
    • Export Citation
  • 23

    Gambichler T, Shtern M, Rotterdam S, Bechara FG, Stücker M, Altmeyer P & Kreuter A Minichromosome maintenance proteins are useful adjuncts to differentiate between benign and malignant melanocytic skin lesions. Journal of the American Academy of Dermatology 2009 60 808813. (https://doi.org/10.1016/j.jaad.2009.01.028)

    • Search Google Scholar
    • Export Citation
  • 24

    Fujioka S, Shomori K, Nishihara K, Yamaga K, Nosaka K, Araki K, Haruki T, Taniguchi Y, Nakamura H & Ito H Expression of minichromosome maintenance 7 (MCM7) in small lung adenocarcinomas (pT1): prognostic implication. Lung Cancer 2009 65 223229. (https://doi.org/10.1016/j.lungcan.2008.11.007)

    • Search Google Scholar
    • Export Citation
  • 25

    Toyokawa G, Masuda K, Daigo Y, Cho HS, Yoshimatsu M, Takawa M, Hayami S, Maejima K, Chino M & Field HI et al. Minichromosome maintenance protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer. Molecular Cancer 2011 10 65. (https://doi.org/10.1186/1476-4598-10-65)

    • Search Google Scholar
    • Export Citation
  • 26

    Fristrup N, Birkenkamp-Demtröder K, Reinert T, Sanchez-Carbayo M, Segersten U, Malmström PU, Palou J, Alvarez-Múgica M, Pan CC & Ulhøi BP et al. Multicenter validation of cyclin D1, MCM7, TRIM29, and UBE2C as prognostic protein markers in non-muscle-invasive bladder cancer. American Journal of Pathology 2013 182 339349. (https://doi.org/10.1016/j.ajpath.2012.10.017)

    • Search Google Scholar
    • Export Citation
  • 27

    Ishibashi Y, Kinugasa T, Akagi Y, Ohchi T, Gotanda Y, Tanaka N, Fujino S, Yuge K, Kibe S & Yoshida N et al. Minichromosome maintenance protein 7 is a risk factor for recurrence in patients with Dukes C colorectal cancer. Anticancer Research 2014 34 45694575.

    • Search Google Scholar
    • Export Citation
  • 28

    Coli A, Asa SL, Fadda G, Scannone D, Chiloiro S, De Marinis L, Lauretti L, Ranelletti FO & Lauriola L Minichromosome maintenance protein 7 as prognostic marker of tumor aggressiveness in pituitary adenoma patients. European Journal of Endocrinology 2016 174 307314. (https://doi.org/10.1530/EJE-15-0586)

    • Search Google Scholar
    • Export Citation
  • 29

    Lindström LS, Karlsson E, Wilking UM, Johansson U, Hartman J, Lidbrink EK, Hatschek T, Skoog L & Bergh J Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. Journal of Clinical Oncology 2012 30 26012608. (https://doi.org/10.1200/JCO.2011.37.2482)

    • Search Google Scholar
    • Export Citation
  • 30

    Mete O, Ezzat S & Asa SL Biomarkers of aggressive pituitary adenomas. Journal of Molecular Endocrinology 2012 49 R69R 78. (https://doi.org/10.1530/JME-12-0113)

    • Search Google Scholar
    • Export Citation
  • 31

    Di Ieva A, Rotondo F, Syro LV, Cusimano MD & Kovacs K Aggressive pituitary adenomas—diagnosis and emerging treatments. Nature Reviews: Endocrinology 2014 10 423435. (https://doi.org/10.1038/nrendo.2014.64)

    • Search Google Scholar
    • Export Citation
  • 32

    Salehi F, Agur A, Scheithauer BW, Kovacs K, Lloyd RV & Cusimano M Biomarkers of pituitary neoplasms: a review–Part II. Neurosurgery 2010 67 17901798; discussion 1798. (https://doi.org/10.1227/NEU.0b013e3181faa680)

    • Search Google Scholar
    • Export Citation
  • 33

    Garbicz F, Mehlich D, Rak B, Sajjad E, Maksymowicz M, Paskal W, Zieliński G & Włodarski PK Increased expression of the microRNA 106b~25 cluster and its host gene MCM7 in corticotroph pituitary adenomas is associated with tumor invasion and Crooke’s cell morphology. Pituitary 2017 20 450463. (https://doi.org/10.1007/s11102-017-0805-y)

    • Search Google Scholar
    • Export Citation
  • 34

    Salehi F, Agur A, Scheithauer BW, Kovacs K, Lloyd RV & Cusimano M Ki-67 in pituitary neoplasms: a review–Part I. Neurosurgery 2009 65 42937; discussion 437. (https://doi.org/10.1227/01.NEU.0000349930.66434.82)

    • Search Google Scholar
    • Export Citation
  • 35

    Kleinschmidt-DeMasters BK Subtyping does matter in pituitary adenomas. Acta Neuropathologica 2006 111 8485. (https://doi.org/10.1007/s00401-005-1105-6)

    • Search Google Scholar
    • Export Citation
  • 36

    Øystese KA, Casar-Borota O, Normann KR, Zucknick M, Berg JP & Bollerslev J Estrogen receptor α, a sex-dependent predictor of aggressiveness in nonfunctioning pituitary adenomas: sstr and sex hormone receptor distribution in NFPA. Journal of Clinical Endocrinology and Metabolism 2017 102 35813590. (https://doi.org/10.1210/jc.2017-00792)

    • Search Google Scholar
    • Export Citation
  • 37

    Cheng S, Wu J, Li C, Li Y, Liu C, Li G, Li W, Hu S, Ying X & Zhang Y Predicting the regrowth of clinically non-functioning pituitary adenoma with a statistical model. Journal of Translational Medicine 2019 17 164. (https://doi.org/10.1186/s12967-019-1915-2)

    • Search Google Scholar
    • Export Citation
  • 38

    Losa M, Franzin A, Mangili F, Terreni MR, Barzaghi R, Veglia F, Mortini P & Giovanelli M Proliferation index of nonfunctioning pituitary adenomas: correlations with clinical characteristics and long-term follow-up results. Neurosurgery 2000 47 13131318; discussion 1318. (https://doi.org/10.1097/00006123-200012000-00009)

    • Search Google Scholar
    • Export Citation
  • 39

    Roelfsema F, Biermasz NR & Pereira AM Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary 2012 15 7183. (https://doi.org/10.1007/s11102-011-0347-7)

    • Search Google Scholar
    • Export Citation
  • 40

    Micko ASG, Wöhrer A, Wolfsberger S & Knosp E Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. Journal of Neurosurgery 2015 122 803811. (https://doi.org/10.3171/2014.12.JNS141083)

    • Search Google Scholar
    • Export Citation