Prevalence and course of thyroid dysfunction in neonates at high risk of Graves’ disease or with non-autoimmune hyperthyroidism

in European Journal of Endocrinology
View More View Less
  • 1 Assistance Publique-Hôpitaux de Paris, Robert Debré University Hospital, Endocrinology-Diabetology Department, Reference Center for Growth and Development Endocrine Diseases, Paris, France
  • 2 Assistance Publique-Hôpitaux de Paris, Robert Debré University Hospital, Obstetrics and Gynecology Department, Paris, France
  • 3 Université de Paris, NeuroDiderot, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
  • 4 Assistance Publique-Hôpitaux de Paris, Biochemistry Unit, Robert Debré University Hospital, Paris, France

Correspondence should be addressed to J Léger; Email: juliane.leger@aphp.fr
Restricted access

Objective

Neonatal hyperthyroidism may be caused by a permanent non-autoimmune genetic disorder or, more frequently, by maternally transmitted high serum TRAb levels. Variable thyroid dysfunction may be observed in this second context. We aimed to evaluate the prevalence of neonatal non-autoimmune hyperthyroidism and of the different types of thyroid function in neonates with a high risk of hyperthyroidism due to maternal Graves’ disease (GD).

Design and methods

This observational cohort study included all neonates identified in the database of a single academic pediatric care center, over a period of 13 years, as having non-autoimmune hyperthyroidism or an autoimmune disorder with high TRAb levels (above 6 IU/L) transmitted by their mothers. Patients were classified as having neonatal hyperthyroidism, hypothyroidism, or euthyroidism with a permanent or transient disorder.

Results

Two of the 34 consecutive neonates selected (6%) had permanent non-autoimmune hyperthyroidism due to germline (n = 1) or somatic (n = 1) mutations of the TSH receptor gene. The patients with high serum TRAb levels at birth had transient hyperthyroidism (n = 23), hypothyroidism (primary n = 2, central n = 3) or persistent euthyroidism (n = 4).

Conclusion

These original findings highlight the need for careful and appropriate monitoring of thyroid function in the long term, not only for the rare patients with non-autoimmune neonatal hyperthyroidism, but also for repeat monitoring during the first month of life in neonates with maternally transmitted high TRAb levels, to ensure the early identification of thyrotoxicosis in more than two thirds of cases and to detect primary or central hypothyroidism, thereby potentially decreasing associated morbidity.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 29 29 29
Full Text Views 4 4 4
PDF Downloads 2 2 2
  • 1

    Chopra IJ Fetal and neonatal hyperthyroidism. Thyroid 1992 2 16116 3. (https://doi.org/10.1089/thy.1992.2.161)

  • 2

    Clavel S, Madec AM, Bornet H, Deviller P, Stefanutti A & Orgiazzi J Anti TSH-receptor antibodies in pregnant patients with autoimmune thyroid disorder. British Journal of Obstetrics and Gynaecology 1990 97 1003100 8. (https://doi.org/10.1111/j.1471-0528.1990.tb02472.x)

    • Search Google Scholar
    • Export Citation
  • 3

    Besancon A, Beltrand J, Le Gac I, Luton D & Polak M Management of neonates born to women with Graves’ disease: a cohort study. European Journal of Endocrinology 2014 170 8558 62. (https://doi.org/10.1530/EJE-13-0994)

    • Search Google Scholar
    • Export Citation
  • 4

    Abeillon-du Payrat J, Chikh K, Bossard N, Bretones P, Gaucherand P, Claris O, Charrié A, Raverot V, Orgiazzi J & Borson-Chazot F Predictive value of maternal second-generation thyroid-binding inhibitory immunoglobulin assay for neonatal autoimmune hyperthyroidism. European Journal of Endocrinology 2014 171 4514 60. (https://doi.org/10.1530/EJE-14-0254)

    • Search Google Scholar
    • Export Citation
  • 5

    Gietka-Czernel M, Debska M, Kretowicz P, Zgliczynski W & Oltarzewski M Hyperthyroidism during pregnancy – the role of measuring maternal TSH receptor antibodies and foetal ultrasound monitoring. Endokrynologia Polska 2014 65 2592 68. (https://doi.org/10.5603/EP.2014.0035)

    • Search Google Scholar
    • Export Citation
  • 6

    Banige M, Estellat C, Biran V, Desfrere L, Champion V, Benachi A, Ville Y, Dommergues M, Jarreau PH & Mokhtari M Study of the factors leading to fetal and neonatal dysthyroidism in children of patients with Graves disease. Journal of the Endocrine Society 2017 1 7517 61. (https://doi.org/10.1210/js.2017-00189)

    • Search Google Scholar
    • Export Citation
  • 7

    Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, Grobman WA, Lauberg P, Lazarus JH & Mandel SJ 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 2017 27 3153 89. (https://doi.org/10.1089/thy.2016.0457)

    • Search Google Scholar
    • Export Citation
  • 8

    van Dijk MM, Smits IH, Fliers E & Bisschop PH Maternal thyrotropin receptor antibody concentration and the risk of fetal and neonatal thyrotoxicosis: a systematic review. Thyroid 2018 28 2572 64. (https://doi.org/10.1089/thy.2017.0413)

    • Search Google Scholar
    • Export Citation
  • 9

    van der Kaay DC, Wasserman JD & Palmert MR Management of neonates born to mothers with Graves’ disease. Pediatrics 2016 137 e20151878. (https://doi.org/10.1542/peds.2015-1878)

    • Search Google Scholar
    • Export Citation
  • 10

    McLachlan SM & Rapoport B Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid 2013 23 1424. (https://doi.org/10.1089/thy.2012.0374)

    • Search Google Scholar
    • Export Citation
  • 11

    Cooper DS & Laurberg P Hyperthyroidism in pregnancy. Lancet: Diabetes and Endocrinology 2013 1 2382 49. (https://doi.org/10.1016/S2213-8587(1370086-X)

    • Search Google Scholar
    • Export Citation
  • 12

    Leger J Management of fetal and neonatal Graves’ disease. Hormone Research in Paediatrics 2017 87 16. (https://doi.org/10.1159/000453065)

    • Search Google Scholar
    • Export Citation
  • 13

    Higuchi R, Kumagai T, Kobayashi M, Minami T, Koyama H & Ishii Y Short-term hyperthyroidism followed by transient pituitary hypothyroidism in a very low birth weight infant born to a mother with uncontrolled Graves’ disease. Pediatrics 2001 107 E57. (https://doi.org/10.1542/peds.107.4.e57)

    • Search Google Scholar
    • Export Citation
  • 14

    Lee YS, Loke KY, Ng SC & Joseph R Maternal thyrotoxicosis causing central hypothyroidism in infants. Journal of Paediatrics and Child Health 2002 38 20620 8. (https://doi.org/10.1046/j.1440-1754.2002.00741.x)

    • Search Google Scholar
    • Export Citation
  • 15

    Kempers MJ, van Tijn DA, van Trotsenburg AS, de Vijlder JJ, Wiedijk BM & Vulsma T Central congenital hypothyroidism due to gestational hyperthyroidism: detection where prevention failed. Journal of Clinical Endocrinology and Metabolism 2003 88 5851585 7. (https://doi.org/10.1210/jc.2003-030665)

    • Search Google Scholar
    • Export Citation
  • 16

    Peeters D, van Gijlswijk S, Leunissen RW & van der Kaay DCM Central congenital hypothyroidism caused by maternal thyrotoxicosis. BMJ Case Reports 2018 2018. (https://doi.org/10.1136/bcr-2017-222620)

    • Search Google Scholar
    • Export Citation
  • 17

    Zimmerman D & Gan-Gaisano M Hyperthyroidism in children and adolescents. Pediatric Clinics of North America 1990 37 127312 95. (https://doi.org/10.1016/s0031-3955(1637011-0)

    • Search Google Scholar
    • Export Citation
  • 18

    Daneman D & Howard NJ Neonatal thyrotoxicosis: intellectual impairment and craniosynostosis in later years. Journal of Pediatrics 1980 97 25725 9. (https://doi.org/10.1016/s0022-3476(8080487-2)

    • Search Google Scholar
    • Export Citation
  • 19

    Zimmerman D Fetal and neonatal hyperthyroidism. Thyroid 1999 9 7277 33. (https://doi.org/10.1089/thy.1999.9.727)

  • 20

    Kratzsch J, Schubert G, Pulzer F, Pfaeffle R, Koerner A, Dietz A, Rauh M, Kiess W & Thiery J Reference intervals for TSH and thyroid hormones are mainly affected by age, body mass index and number of blood leucocytes, but hardly by gender and thyroid autoantibodies during the first decades of life. Clinical Biochemistry 2008 41 1091109 8. (https://doi.org/10.1016/j.clinbiochem.2008.04.007)

    • Search Google Scholar
    • Export Citation
  • 21

    Mikolajczak A, Borszewska-Kornacka MK & Bokiniec R Sonographic reference ranges for the thyroid gland in euthyroid term newborns. American Journal of Perinatology 2015 32 125712 62. (https://doi.org/10.1055/s-0035-1552937)

    • Search Google Scholar
    • Export Citation
  • 22

    Madec AM, Clavel S, Stefanutti A & Orgiazzi J Blocking anti-thyrotropin receptor antibodies desensitize cultured human thyroid cells. Endocrinology 1988 123 2062206 6. (https://doi.org/10.1210/endo-123-4-2062)

    • Search Google Scholar
    • Export Citation
  • 23

    Kamijo K TSH-receptor antibodies determined by the first, second and third generation assays and thyroid-stimulating antibody in pregnant patients with Graves’ disease. Endocrine Journal 2007 54 6196 24. (https://doi.org/10.1507/endocrj.k06-196)

    • Search Google Scholar
    • Export Citation
  • 24

    Elston MS, Tu’akoi K, Meyer-Rochow GY, Tamatea JA & Conaglen JV Pregnancy after definitive treatment for Graves’ disease – does treatment choice influence outcome? Australian and New Zealand Journal of Obstetrics and Gynaecology 2014 54 3173 21. (https://doi.org/10.1111/ajo.12196)

    • Search Google Scholar
    • Export Citation
  • 25

    Uenaka M, Tanimura K, Tairaku S, Morioka I, Ebina Y & Yamada H Risk factors for neonatal thyroid dysfunction in pregnancies complicated by Graves’ disease. European Journal of Obstetrics, Gynecology, and Reproductive Biology 2014 177 8993. (https://doi.org/10.1016/j.ejogrb.2014.03.007)

    • Search Google Scholar
    • Export Citation
  • 26

    Brown RS, Bellisario RL, Botero D, Fournier L, Abrams CA, Cowger ML, David R, Fort P & Richman RA Incidence of transient congenital hypothyroidism due to maternal thyrotropin receptor-blocking antibodies in over one million babies. Journal of Clinical Endocrinology and Metabolism 1996 81 114711 51. (https://doi.org/10.1210/jcem.81.3.8772590)

    • Search Google Scholar
    • Export Citation
  • 27

    Kempers MJ, van Trotsenburg AS, van Rijn RR, Smets AM, Smit BJ, de Vijlder JJ & Vulsma T Loss of integrity of thyroid morphology and function in children born to mothers with inadequately treated Graves’ disease. Journal of Clinical Endocrinology and Metabolism 2007 92 298429 91. (https://doi.org/10.1210/jc.2006-2042)

    • Search Google Scholar
    • Export Citation
  • 28

    Laurberg P, Wallin G, Tallstedt L, Abraham-Nordling M, Lundell G & Torring O TSH-receptor autoimmunity in Graves’ disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. European Journal of Endocrinology 2008 158 6975. (https://doi.org/10.1530/EJE-07-0450)

    • Search Google Scholar
    • Export Citation
  • 29

    Yoshihara A, Iwaku K, Noh JY, Watanabe N, Kunii Y, Ohye H, Suzuki M, Matsumoto M, Suzuki N & Tadokoro R Incidence of neonatal hyperthyroidism among newborns of Graves’ disease patients treated with radioiodine therapy. Thyroid 2019 29 1281 34. (https://doi.org/10.1089/thy.2018.0165)

    • Search Google Scholar
    • Export Citation
  • 30

    Matsuura N, Harada S, Ohyama Y, Shibayama K, Fukushi M, Ishikawa N, Yuri K, Nakanishi M, Yokota Y & Kazahari K The mechanisms of transient hypothyroxinemia in infants born to mothers with Graves’ disease. Pediatric Research 1997 42 21421 8. (https://doi.org/10.1203/00006450-199708000-00014)

    • Search Google Scholar
    • Export Citation
  • 31

    Prummel MF, Brokken LJ & Wiersinga WM Ultra short-loop feedback control of thyrotropin secretion. Thyroid 2004 14 82582 9. (https://doi.org/10.1089/thy.2004.14.825)

    • Search Google Scholar
    • Export Citation
  • 32

    Zwaveling-Soonawala N, van Trotsenburg P & Vulsma T Central hypothyroidism in an infant born to an adequately treated mother with Graves’ disease: an effect of maternally derived thyrotrophin receptor antibodies? Thyroid 2009 19 66166 2. (https://doi.org/10.1089/thy.2008.0348)

    • Search Google Scholar
    • Export Citation
  • 33

    Kopp P, van Sande J, Parma J, Duprez L, Gerber H, Joss E, Jameson JL, Dumont JE & Vassart G Brief report: congenital hyperthyroidism caused by a mutation in the thyrotropin-receptor gene. New England Journal of Medicine 1995 332 15015 4. (https://doi.org/10.1056/NEJM199501193320304)

    • Search Google Scholar
    • Export Citation
  • 34

    Schwab KO, Gerlich M, Broecker M, Sohlemann P, Derwahl M & Lohse MJ Constitutively active germline mutation of the thyrotropin receptor gene as a cause of congenital hyperthyroidism. Journal of Pediatrics 1997 131 899904. (https://doi.org/10.1016/s0022-3476(9770040-4)

    • Search Google Scholar
    • Export Citation
  • 35

    Gelwane G, de Roux N, Chevenne D, Carel JC & Leger J Pituitary-thyroid feedback in a patient with a sporadic activating thyrotropin (TSH) receptor mutation: implication that thyroid-secreted factors other than thyroid hormones contribute to serum TSH levels. Journal of Clinical Endocrinology and Metabolism 2009 94 278727 91. (https://doi.org/10.1210/jc.2008-2524)

    • Search Google Scholar
    • Export Citation
  • 36

    Kopp P, Muirhead S, Jourdain N, Gu WX, Jameson JL & Rodd C Congenital hyperthyroidism caused by a solitary toxic adenoma harboring a novel somatic mutation (serine281-->isoleucine) in the extracellular domain of the thyrotropin receptor. Journal of Clinical Investigation 1997 100 1634163 9. (https://doi.org/10.1172/JCI119687)

    • Search Google Scholar
    • Export Citation
  • 37

    Grob F, Deladoey J, Legault L, Spigelblatt L, Fournier A, Vassart G & Van Vliet G Autonomous adenomas caused by somatic mutations of the thyroid-stimulating hormone receptor in children. Hormone Research in Paediatrics 2014 81 737 9. (https://doi.org/10.1159/000357143)

    • Search Google Scholar
    • Export Citation