Steroid reference intervals in women: influence of menopause, age and metabolism

in European Journal of Endocrinology
View More View Less
  • 1 Department of Medical and Surgical Sciences, Unit of Endocrinology and Prevention and Care of Diabetes, Center for Applied Biomedical Research, University of Bologna, S.Orsola Policlinic, Bologna, Italy

Correspondence should be addressed to F Fanelli; Email: flaminia.fanelli2@unibo.it
Restricted access

Objective

To investigate the impact of age, obesity and metabolic parameters on 13 circulating steroids in reproductive and menopausal age. To define reference intervals (RIs).

Design

Cross-sectional.

Methods

Three hundred and twenty five drug-free, healthy and eumenorrheic women were selected from the general population. Independent relationships of LC-MS/MS-determined steroid levels with age, BMI and metabolic parameters were estimated. Reference sub-cohorts were defined for calculating upper and lower limits in reproductive age, menstrual phases and menopause, and these were compared with limits in dysmetabolic sub-cohorts.

Results

Lower androgens, pro-androgens and estrogens, but higher cortisol and metabolites were found in menopausal compared to reproductive age women. Androgens and precursors decreased during reproductive age (P < 0.001–P = 0.002) but not after menopause. 17OH-progesterone decreased with BMI (P = 0.006) and glucocorticoids with waist circumference (P < 0.001P = 0.002) in reproductive age, but increased with triglycerides (P=0.011P=0.038) after menopause. Inverse associations of dihydrotestosterone with BMI (P=0.004) and HDL-cholesterol (P=0.010), estrone with total cholesterol (P=0.033) and estradiol with triglycerides (P=0.011) were found in reproductive age. After menopause, estrone increased with waist circumference (P<0.001) and decreased with insulin resistance (P=0.012). Ovarian steroid RIs were estimated in menstrual phases and menopause. Age- and reproductive status-specific RIs were generated for androgens, precursors and corticosteroids. Lower limits for reproductive age cortisol (P=0.020) and menopausal 11-deoxycortisol (P=0.003) in dysmetabolic sub-cohorts were reduced and increased, respectively, compared to reference limits.

Conclusions

Obesity and dysmetabolism differently influence circulating steroids in reproductive and menopausal status. Age, menstrual and menopausal status-specific RIs were provided by LC-MS/MS for a broad steroid panel.

Supplementary Materials

    • Supplemental Table 1. Functional sensitivity limits by the LC-MS/MS assays used in the present study.
    • Supplemental Table 2. Anthropometric, metabolic and hormonal features of women sub-classified according to the menstrual phase.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 45 45 45
Full Text Views 3 3 3
PDF Downloads 1 1 1
  • 1

    Ketha SS, Singh RJ & Ketha H Role of mass spectrometry in clinical endocrinology. Endocrinology and Metabolism Clinics of North America 2017 46 593613. (https://doi.org/10.1016/j.ecl.2017.04.001)

    • Search Google Scholar
    • Export Citation
  • 2

    Wudy SA, Schuler G, Sánchez-Guijo A & Hartmann MF The art of measuring steroids: principles and practice of current hormonal steroid analysis. Journal of Steroid Biochemistry and Molecular Biology 2018 179 88103. (https://doi.org/10.1016/j.jsbmb.2017.09.003)

    • Search Google Scholar
    • Export Citation
  • 3

    Ceriotti F, Hinzmann R & Panteghini M Reference intervals: the way forward. Annals of Clinical Biochemistry 2009 46 817. (https://doi.org/10.1258/acb.2008.008170)

    • Search Google Scholar
    • Export Citation
  • 4

    Fanelli F & Di Dalmazi G Serum steroid profiling by mass spectrometry in adrenocortical tumors: diagnostic implications. Current Opinion in Endocrinology, Diabetes, and Obesity 2019 26 160165. (https://doi.org/10.1097/MED.0000000000000475)

    • Search Google Scholar
    • Export Citation
  • 5

    Gunness A, Pazderska A, Ahmed M, McGowan A, Phelan N, Boran G, Taylor AE, O'Reilly MW, Arlt W & Moore K Measurement of selected androgens using liquid chromatography-tandem mass spectrometry in reproductive-age women with Type 1 diabetes. Human Reproduction 2018 33 17271734. (https://doi.org/10.1093/humrep/dey243)

    • Search Google Scholar
    • Export Citation
  • 6

    Pasquali R, Zanotti L, Fanelli F, Mezzullo M, Fazzini A, Morselli-Labate AM, Repaci A, Ribichini D & Gambineri A Defining hyperandrogenism in women with polycystic ovary syndrome: a challenging perspective. Journal of Clinical Endocrinology & Metabolism 2016 101 20132022. (https://doi.org/10.1210/jc.2015-4009)

    • Search Google Scholar
    • Export Citation
  • 7

    O'Reilly MW, Kempegowda P, Jenkinson C, Taylor AE, Quanson JL, Storbeck KH & Arlt W 11-Oxygenated C19 steroids are the predominant androgens in polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism 2017 102 840848. (https://doi.org/10.1210/jc.2016-3285)

    • Search Google Scholar
    • Export Citation
  • 8

    Sharma A, Kapoor E, Singh RJ, Chang AY & Erickson D Diagnostic thresholds for androgen-producing tumors or pathologic hyperandrogenism in women by use of total testosterone concentrations measured by liquid chromatography-tandem mass spectrometry. Clinical Chemistry 2018 64 16361645. (https://doi.org/10.1373/clinchem.2018.290825)

    • Search Google Scholar
    • Export Citation
  • 9

    Turcu AF, El-Maouche D, Zhao L, Nanba AT, Gaynor A, Veeraraghavan P, Auchus RJ & Merke DP Androgen excess and diagnostic steroid biomarkers for nonclassic 21-hydroxylase deficiency without cosyntropin stimulation. European Journal of Endocrinology 2020 183 6371. (https://doi.org/10.1530/EJE-20-0129)

    • Search Google Scholar
    • Export Citation
  • 10

    Fanelli F, Baronio F, Ortolano R, Mezzullo M, Cassio A, Pagotto U & Balsamo A Normative basal values of hormones and protein of gonadal and adrenal functions from birth to adulthood. Sexual Development: Genetics, Molecular Biology, Evolution, Endocrinology, Embryology, and Pathology of Sex Determination and Differentiation 2018 12 5094. (https://doi.org/10.1159/000486840)

    • Search Google Scholar
    • Export Citation
  • 11

    Piché ME, Poirier P, Lemieux I & Després JP Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Progress in Cardiovascular Diseases 2018 61 103113. (https://doi.org/10.1016/j.pcad.2018.06.004)

    • Search Google Scholar
    • Export Citation
  • 12

    Gerdts E & Regitz-Zagrosek V Sex differences in cardiometabolic disorders. Nature Medicine 2019 25 16571666. (https://doi.org/10.1038/s41591-019-0643-8)

    • Search Google Scholar
    • Export Citation
  • 13

    Guarner-Lans V, Rubio-Ruiz ME, Pérez-Torres I & Baños de MacCarthy G Relation of aging and sex hormones to metabolic syndrome and cardiovascular disease. Experimental Gerontology 2011 46 5175 23. (https://doi.org/10.1016/j.exger.2011.02.007)

    • Search Google Scholar
    • Export Citation
  • 14

    Pasquali R & Gambineri A Polycystic ovary syndrome: a multifaceted disease from adolescence to adult age. Annals of the New York Academy of Sciences 2006 1092 158174. (https://doi.org/10.1196/annals.1365.014)

    • Search Google Scholar
    • Export Citation
  • 15

    Pasquali R, Vicennati V, Gambineri A & Pagotto U Sex-dependent role of glucocorticoids and androgens in the pathophysiology of human obesity. International Journal of Obesity 2008 32 17641779. (https://doi.org/10.1038/ijo.2008.129)

    • Search Google Scholar
    • Export Citation
  • 16

    Nieuwenhuizen AG & Rutters F The hypothalamic-pituitary-adrenal axis in the regulation of energy balance. Physiology and Behavior 2009 4 169177.

    • Search Google Scholar
    • Export Citation
  • 17

    Mezzullo M, Di Dalmazi G, Fazzini A, Baccini M, Repaci A, Gambineri A, Vicennati V, Pelusi C, Pagotto U & Fanelli F Impact of age, body weight and metabolic risk factors on steroid reference intervals in men. European Journal of Endocrinology 2020 182 459471. (https://doi.org/10.1530/EJE-19-0928)

    • Search Google Scholar
    • Export Citation
  • 18

    Fanelli F, Belluomo I, Di Lallo VD, Cuomo G, De Iasio R, Baccini M, Casadio E, Casetta B, Vicennati V & Gambineri A Serum steroid profiling by isotopic dilution-liquid chromatography-mass spectrometry: comparison with current immunoassays and reference intervals in healthy adults. Steroids 2011 76 244253. (https://doi.org/10.1016/j.steroids.2010.11.005)

    • Search Google Scholar
    • Export Citation
  • 19

    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF & Turner RC Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985 28 412419. (https://doi.org/10.1007/BF00280883)

    • Search Google Scholar
    • Export Citation
  • 20

    Büttler RM, Martens F, Fanelli F, Pham HT, Kushnir MM, Janssen MJ, Owen L, Taylor AE, Soeborg T & Blankenstein MA et al. Comparison of published LC-MS/MS methods for the simultaneous measurement of testosterone, androstenedione, and dehydroepiandrosterone in serum. Clinical Chemistry 2015 61 14751483. (https://doi.org/10.1373/clinchem.2015.242859)

    • Search Google Scholar
    • Export Citation
  • 21

    Mezzullo M, Pelusi C, Fazzini A, Repaci A, Di Dalmazi G, Gambineri A, Pagotto U & Fanelli F Serum reference intervals for challenging sex and precursor steroids by liquid chromatography tandem mass spectrometry. Journal of Steroid Biochemistry and Molecular Biology 2020 197 105538.

    • Search Google Scholar
    • Export Citation
  • 22

    Box GEP & Cox DR An analysis of transformations. Journal of the Royal Statistical Society: B 1964 26 211243. (https://doi.org/10.1111/j.2517-6161.1964.tb00553.x)

    • Search Google Scholar
    • Export Citation
  • 23

    Tukey JW Exploratory Data Analysis. Addison-Wesley, 1977. ISBN 978-0-201-07616-5. OCLC 3058187.

  • 24

    Cohen J Statistical Power Analysis for the Behavioural Sciences. Routledge, 1988.

  • 25

    Clinical and Laboratory Standard Institute Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline, 3rd ed. CLSI document EP28-A3c: Wayne, PA: Clinical and Laboratory Standards Institute, 2008.

    • Search Google Scholar
    • Export Citation
  • 26

    Royston P & Wright EM Method for estimating age-specific reference intervals (normal ranges) based on fractional polynomials and exponential transformation. Journal of the Royal Statistical Society: Series A 1998 161 79101. (https://doi.org/10.1111/1467-985X.00091)

    • Search Google Scholar
    • Export Citation
  • 27

    Frederiksen H, Johannsen TH, Andersen SE, Albrethsen J, Landersoe SK, Petersen JH, Andersen AN, Vestergaard ET, Schorring ME & Linneberg A Sex-specific estrogen levels and reference intervals from infancy to late adulthood determined by LC-MS/MS. Journal of Clinical Endocrinology & Metabolism 2020 105 754768. (https://doi.org/10.1210/clinem/dgz196)

    • Search Google Scholar
    • Export Citation
  • 28

    Freeman EW, Sammel MD, Lin H & Gracia CR Obesity and reproductive hormone levels in the transition to menopause. Menopause 2010 17 718726. (https://doi.org/10.1097/gme.0b013e3181cec85d)

    • Search Google Scholar
    • Export Citation
  • 29

    Kroboth PD, Salek FS, Pittenger AL, Fabian TJ & Frye RF DHEA and DHEA-S: a review. Journal of Clinical Pharmacology 1999 39 327348. (https://doi.org/10.1177/00912709922007903)

    • Search Google Scholar
    • Export Citation
  • 30

    Parker CR Jr, Slayden SM, Azziz R, Crabbe SL, Hines GA, Boots LR & Bae S Effects of aging on adrenal function in the human: responsiveness and sensitivity of adrenal androgens and cortisol to adrenocorticotropin in premenopausal and postmenopausal women. Journal of Clinical Endocrinology & Metabolism 2000 85 4854. (https://doi.org/10.1210/jcem.85.1.6265)

    • Search Google Scholar
    • Export Citation
  • 31

    Eisenhofer G, Peitzsch M, Kaden D, Langton K, Pamporaki C, Masjkur J, Tsatsaronis G, Mangelis A, Williams TA & Reincke M Reference intervals for plasma concentrations of adrenal steroids measured by LC-MS/MS: impact of gender, age, oral contraceptives, body mass index and blood pressure status. Clinica Chimica Acta: International Journal of Clinical Chemistry 2017 470 115124. (https://doi.org/10.1016/j.cca.2017.05.002)

    • Search Google Scholar
    • Export Citation
  • 32

    Bae YJ, Zeidler R, Baber R, Vogel M, Wirkner K, Loeffler M, Ceglarek U, Kiess W, Körner A & Thiery J Reference intervals of nine steroid hormones over the life-span analyzed by LC-MS/MS: effect of age, gender, puberty, and oral contraceptives. Journal of Steroid Biochemistry and Molecular Biology 2019 193 105409. (https://doi.org/10.1016/j.jsbmb.2019.105409)

    • Search Google Scholar
    • Export Citation
  • 33

    Nanba AT, Rege J, Ren J, Auchus RJ, Rainey WE & Turcu AF 11-Oxygenated C19 steroids do not decline with age in women. Journal of Clinical Endocrinology & Metabolism 2019 104 26152622. (https://doi.org/10.1210/jc.2018-02527)

    • Search Google Scholar
    • Export Citation
  • 34

    Skiba MA, Bell RJ, Islam RM, Handelsman DJ, Desai R & Davis SR Androgens During the reproductive years: what is normal for women? Journal of Clinical Endocrinology & Metabolism 2019 104 53825392. (https://doi.org/10.1210/jc.2019-01357)

    • Search Google Scholar
    • Export Citation
  • 35

    van der Veen A, van Faassen M, de Jong WHA, van Beek AP, Dijck-Brouwer DAJ & Kema IP Development and validation of a LC-MS/MS method for the establishment of reference intervals and biological variation for five plasma steroid hormones. Clinical Biochemistry 2019 68 1523. (https://doi.org/10.1016/j.clinbiochem.2019.03.013)

    • Search Google Scholar
    • Export Citation
  • 36

    Davio A, Woolcock H, Nanba AT, Rege J, O’Day P, Ren J, Zhao L, Ebina H, Auchus R, Rainey WEet al. Sex differences in 11-oxygenated androgen patterns Across adulthood. Journal of Clinical Endocrinology & Metabolism 2020 105 19. (https://doi.org/10.1210/clinem/dgaa343)

    • Search Google Scholar
    • Export Citation
  • 37

    Yamatani H, Takahashi K, Yoshida T, Takata K & Kurachi H Association of estrogen with glucocorticoid levels in visceral fat in postmenopausal women. Menopause 2013 20 437442. (https://doi.org/10.1097/gme.0b013e318271a640)

    • Search Google Scholar
    • Export Citation
  • 38

    Côté JA, Lessard J, Mailloux J, Laberge P, Rhéaume C & Tchernof A Circulating 5α-dihydrotestosterone, abdominal obesity and adipocyte characteristics in women. Hormone Molecular Biology and Clinical Investigation 2012 12 391400. (https://doi.org/10.1515/hmbci-2012-0026)

    • Search Google Scholar
    • Export Citation
  • 39

    Marchand GB, Carreau AM, Weisnagel SJ, Bergeron J, Labrie F, Lemieux S & Tchernof A Increased body fat mass explains the positive association between circulating estradiol and insulin resistance in postmenopausal women. American Journal of Physiology. Endocrinology and Metabolism 2018 314 E448E456. (https://doi.org/10.1152/ajpendo.00293.2017)

    • Search Google Scholar
    • Export Citation
  • 40

    Marchand GB, Carreau A, Laforest S, Côté J, Daris M, Cianflone K, Prehn C, Adamski J & Tchernof A Circulating steroid levels as correlates of adipose tissue phenotype in premenopausal women. Hormone Molecular Biology and Clinical Investigation 2018 34 20170082 (https://doi.org/10.1515/hmbci-2017-0082).

    • Search Google Scholar
    • Export Citation
  • 41

    Vihma V, Heinonen S, Naukkarinen J, Kaprio J, Rissanen A, Turpeinen U, Hämäläinen E, Hakkarainen A, Lundbom J & Lundbom N Increased body fat mass and androen metabolism—a twin study in healthy young women. Steroids 2018 140 2431. (https://doi.org/10.1016/j.steroids.2018.08.006)

    • Search Google Scholar
    • Export Citation
  • 42

    Faulds MH, Zhao C, Dahlman-Wright K & Gustafsson The diversity of sex steroid action: regulation of metabolism by estrogen signaling. Journal of Endocrinology 2012 212 312. (https://doi.org/10.1530/JOE-11-0044)

    • Search Google Scholar
    • Export Citation
  • 43

    Hetemäki N, Savolainen-Peltonen H, Tikkanen MJ, Wang F, Paatela H, Hämäläinen E, Turpeinen U, Haanpää M, Vihma V & Mikkola TS Estrogen metabolism in abdominal subcutaneous and visceral adipose tissue in postmenopausal women. Journal of Clinical Endocrinology & Metabolism 2017 102 45884595. (https://doi.org/10.1210/jc.2017-01474)

    • Search Google Scholar
    • Export Citation
  • 44

    Walker BR, Soderberg S, Lindahl B & Olsson T Independent effects of obesity and cortisol in predicting cardiovascular risk factors in men and women. Journal of Internal Medicine 2000 247 198204. (https://doi.org/10.1046/j.1365-2796.2000.00609.x)

    • Search Google Scholar
    • Export Citation
  • 45

    Roelfsema F, Pereira AM & Veldhuis JD Impact of adiposity and fat distribution on the dynamics of adrenocorticotropin and cortisol rhythms. Current Obesity Reports 2014 3 387395. (https://doi.org/10.1007/s13679-014-0118-7)

    • Search Google Scholar
    • Export Citation
  • 46

    Björntorp P & Rosmond R Obesity and cortisol. Nutrition 2000 16 924936. (https://doi.org/10.1016/s0899-9007(0000422-6)

  • 47

    Verdonk SJE, Vesper HW, Martens F, Sluss PM, Hillebrand JJ & Heijboer AC Estradiol reference intervals in women during the menstrual cycle, postmenopausal women and men using an LC-MS/MS method. Clinica Chimica Acta: International Journal of Clinical Chemistry 2019 495 198204. (https://doi.org/10.1016/j.cca.2019.04.062)

    • Search Google Scholar
    • Export Citation
  • 48

    Bui HN, Sluss PM, Blincko S, Knol DL, Blankenstein MA & Heijboer AC Dynamics of serum testosterone during the menstrual cycle evaluated by daily measurements with an ID-LC-MS/MS method and a 2nd generation automated immunoassay. Steroids 2013 78 96101. (https://doi.org/10.1016/j.steroids.2012.10.010)

    • Search Google Scholar
    • Export Citation
  • 49

    Kushnir MM, Rockwood AL, Roberts WL, Pattison EG, Owen WE, Bunker AM & Meikle AW Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clinical Chemistry 2006 52 15591567. (https://doi.org/10.1373/clinchem.2006.068445)

    • Search Google Scholar
    • Export Citation
  • 50

    Parikh TP, Stolze B, Ozarda Y, Jonklaas J, Welsh K, Masika L, Hill M, DeCherney A & Soldin SJ Diurnal variation of steroid hormones and their reference intervals using mass spectrometric analysis. Endocrine Connections 2018 7 13541361. (https://doi.org/10.1530/EC-18-0417)

    • Search Google Scholar
    • Export Citation
  • 51

    Weckesser LJ, Plessow F, Pilhatsch M, Muehlhan M, Kirschbaum C & Miller R Do venepuncture procedures induce cortisol responses? A review, study, and synthesis for stress research, study. Psychoneuroendocrinology 2014 46 8899. (https://doi.org/10.1016/j.psyneuen.2014.04.012)

    • Search Google Scholar
    • Export Citation
  • 52

    Mezzullo M, Fanelli F, Di Dalmazi G, Fazzini A, Ibarra-Gasparini D, Mastroroberto M, Guidi J, Morselli-Labate AM, Pasquali R & Pagotto U Salivary cortisol and cortisone responses to short-term psychological stress challenge in late adolescent and young women with different hyperandrogenic states. Psychoneuroendocrinology 2018 91 3140. (https://doi.org/10.1016/j.psyneuen.2018.02.022)

    • Search Google Scholar
    • Export Citation