Metformin use is associated with a lower risk of osteoporosis/vertebral fracture in Taiwanese patients with type 2 diabetes mellitus

in European Journal of Endocrinology
View More View Less
  • 1 Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
  • 2 Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
  • 3 Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan

Correspondence should be addressed to C-H Tseng; Email: ccktsh@ms6.hinet.net
Restricted access

Objectives

To investigate the metformin effect on the risk of osteoporosis (OS) and/or vertebral fracture (VF).

Methods

We enrolled 14 611 pairs of metformin ever and never users matched on propensity score (PS) from Taiwan’s National Health Insurance database. All patients had new-onset type 2 diabetes mellitus (T2DM) during 1999–2005 and were free from OS and/or any fracture at the start of follow-up on January 1, 2006. They were followed up until December 31, 2011 for the incidence of OS/VF. Cox regression incorporated with the inverse probability of treatment weighting using PS was used in the main analyses.

Results

New-onset OS/VF was diagnosed in 1757 never users (median follow-up 5.0 years) and 1143 ever users (median follow-up 5.3 years). The respective incidence rates were 2870.97 and 1713.20 per 100 000 person-years. Two-thirds of the incident cases had OS without VF and the other third had VF. In main analyses, the hazard ratio for ever vs never users was 0.592 (95% CI: 0.550–0.638). In either sex, a dose–response pattern was noted and metformin therapy > 2 years was consistently associated with a lower risk. The protective effect attenuated with increasing age but remained significant in patients aged ≥ 80 years. In sensitivity analyses, metformin significantly reduced the risk of both OS and VF (with or without a prior OS) by 30–40%. Additional analyses showed a null association for other antidiabetic drugs, but significant interactions between metformin and insulin, sulfonylurea and pioglitazone, respectively, were noted.

Conclusion

Metformin use is associated with a lower risk of OS/VF.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 117 117 117
Full Text Views 15 15 15
PDF Downloads 12 12 12
  • 1

    Hamann C, Kirschner S, Günther KP & Hofbauer LC Bone, sweet bone – osteoporotic fractures in diabetes mellitus. Nature Reviews: Endocrinology 2012 8 297305. (https://doi.org/10.1038/nrendo.2011.233)

    • Search Google Scholar
    • Export Citation
  • 2

    Napoli N, Strollo R, Paladini A, Briganti SI, Pozzilli P & Epstein S The alliance of mesenchymal stem cells, bone, and diabetes. International Journal of Endocrinology 2014 2014 690783. (https://doi.org/10.1155/2014/690783)

    • Search Google Scholar
    • Export Citation
  • 3

    Hough FS, Pierroz DD, Cooper C, Ferrari SLIOF CSA Bone and Diabetes Working Group. MECHANISMS IN ENDOCRINOLOGY: Mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. European Journal of Endocrinology 2016 174 R127R1 38. (https://doi.org/10.1530/EJE-15-0820)

    • Search Google Scholar
    • Export Citation
  • 4

    Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SLIOF Bone and Diabetes Working Group. Mechanisms of diabetes mellitus-induced bone fragility. Nature Reviews: Endocrinology 2017 13 208219. (https://doi.org/10.1038/nrendo.2016.153)

    • Search Google Scholar
    • Export Citation
  • 5

    Poiana C & Capatina C Fracture risk assessment in patients with diabetes mellitus. Journal of Clinical Densitometry 2017 20 432443. (https://doi.org/10.1016/j.jocd.2017.06.011)

    • Search Google Scholar
    • Export Citation
  • 6

    Vestergaard P Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporosis International 2007 18 42744 4. (https://doi.org/10.1007/s00198-006-0253-4)

    • Search Google Scholar
    • Export Citation
  • 7

    Cipriani C, Colangelo L, Santori R, Renella M, Mastrantonio M, Minisola S & Pepe J The interplay between bone and glucose metabolism. Frontiers in Endocrinology 2020 11 122. (https://doi.org/10.3389/fendo.2020.00122)

    • Search Google Scholar
    • Export Citation
  • 8

    Melton 3rd LJ, Leibson CL, Achenbach SJ, Therneau TM & Khosla S Fracture risk in type 2 diabetes: update of a population-based study. Journal of Bone and Mineral Research 2008 23 133413 42. (https://doi.org/10.1359/jbmr.080323)

    • Search Google Scholar
    • Export Citation
  • 9

    Kanazawa I, Yamaguchi T, Yamamoto M & Sugimoto T Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. Journal of Bone and Mineral Metabolism 2010 28 5545 60. (https://doi.org/10.1007/s00774-010-0160-9)

    • Search Google Scholar
    • Export Citation
  • 10

    Hidayat K, Du X, Wu MJ & Shi BM The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: systematic review and meta-analysis of observational studies. Obesity Reviews 2019 20 14941503. (https://doi.org/10.1111/obr.12885)

    • Search Google Scholar
    • Export Citation
  • 11

    Zhu ZN, Jiang YF & Ding T Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 2014 68 1151 23. (https://doi.org/10.1016/j.bone.2014.08.010)

    • Search Google Scholar
    • Export Citation
  • 12

    Bazelier MT, de Vries F, Vestergaard P, Herings RM, Gallagher AM, Leufkens HG & van Staa TP Risk of fracture with thiazolidinediones: an individual patient data meta-analysis. Frontiers in Endocrinology 2013 4 11. (https://doi.org/10.3389/fendo.2013.00011)

    • Search Google Scholar
    • Export Citation
  • 13

    Zhou Z, Jardine M, Perkovic V, Matthews DR, Mahaffey KW, de Zeeuw D, Fulcher G, Desai M, Oh R & Simpson R Canagliflozin and fracture risk in individuals with type 2 diabetes: results from the CANVAS Program. Diabetologia 2019 62 18541867. (https://doi.org/10.1007/s00125-019-4955-5)

    • Search Google Scholar
    • Export Citation
  • 14

    Hruska KA, Sugatani T, Agapova O & Fang Y The chronic kidney disease – mineral bone disorder (CKD-MBD): advances in pathophysiology. Bone 2017 100 8086. (https://doi.org/10.1016/j.bone.2017.01.023)

    • Search Google Scholar
    • Export Citation
  • 15

    Bahrambeigi S, Yousefi B, Rahimi M & Shafiei-Irannejad V Metformin; an old antidiabetic drug with new potentials in bone disorders. Biomedicine and Pharmacotherapy 2019 109 15931601. (https://doi.org/10.1016/j.biopha.2018.11.032)

    • Search Google Scholar
    • Export Citation
  • 16

    Jiating L, Buyun J & Yinchang Z Role of metformin on osteoblast differentiation in type 2 diabetes. BioMed Research International 2019 2019 9203934. (https://doi.org/10.1155/2019/9203934)

    • Search Google Scholar
    • Export Citation
  • 17

    Vestergaard P, Rejnmark L & Mosekilde L Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 2005 48 1292129 9. (https://doi.org/10.1007/s00125-005-1786-3)

    • Search Google Scholar
    • Export Citation
  • 18

    Starup-Linde J, Gregersen S & Vestergaard P Associations with fracture in patients with diabetes: a nested case-control study. BMJ Open 2016 6 e009686. (https://doi.org/10.1136/bmjopen-2015-009686)

    • Search Google Scholar
    • Export Citation
  • 19

    Monami M, Cresci B, Colombini A, Pala L, Balzi D, Gori F, Chiasserini V, Marchionni N, Rotella CM & Mannucci E Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes Care 2008 31 199203. (https://doi.org/10.2337/dc07-1736)

    • Search Google Scholar
    • Export Citation
  • 20

    Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR, Dam TT, Barrett-Connor E, Palermo L & Orwoll ES Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 2014 57 205720 65. (https://doi.org/10.1007/s00125-014-3289-6)

    • Search Google Scholar
    • Export Citation
  • 21

    Salari-Moghaddam A, Sadeghi O, Keshteli AH, Larijani B & Esmaillzadeh A Metformin use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporosis International 2019 30 11671173. (https://doi.org/10.1007/s00198-019-04948-1)

    • Search Google Scholar
    • Export Citation
  • 22

    Tseng CH Metformin is associated with a lower risk of colorectal cancer in Taiwanese patients with type 2 diabetes: a retrospective cohort analysis. Diabetes and Metabolism 2017 43 4384 4 5. (https://doi.org/10.1016/j.diabet.2017.03.004)

    • Search Google Scholar
    • Export Citation
  • 23

    Parsons LS Performing a 1:N case-control match on propensity score. (available at: http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CBsQFjAAahUKEwibi7HllcnIAhUDoJQKHVeZA9A&url=http%3A%2F%2Fwww2.sas.com%2Fproceedings%2Fsugi29%2F165-29.pdf&usg=AFQjCNFOHGWYu8E8Bn4-Bo1TUiJKtT987Q). Accessed on 5 March 2020.

    • Search Google Scholar
    • Export Citation
  • 24

    Chang L A study of validation on comorbidity derived from claims data. Master thesis, National Yang-Ming University, 2004. (available at: http://etd.lib.nctu.edu.tw/cgi-bin/gs32/ymgsweb.cgi/ccd=ji3XTg/search#result). Accessed on 22 February 2020.

    • Search Google Scholar
    • Export Citation
  • 25

    Tseng CH Diabetes, metformin use, and colon cancer: a population-based cohort study in Taiwan. European Journal of Endocrinology 2012 167 4094 16. (https://doi.org/10.1530/EJE-12-0369)

    • Search Google Scholar
    • Export Citation
  • 26

    Tseng CH Diabetes, insulin use and Helicobacter pylori eradication: a retrospective cohort study. BMC Gastroenterology 2012 12 46. (https://doi.org/10.1186/1471-230X-12-46)

    • Search Google Scholar
    • Export Citation
  • 27

    Austin PC & Stuart EA Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine 2015 34 366136 79. (https://doi.org/10.1002/sim.6607)

    • Search Google Scholar
    • Export Citation
  • 28

    Austin PC The performance of different propensity score methods for estimating marginal hazard ratios. Statistics in Medicine 2013 32 283728 49. (https://doi.org/10.1002/sim.5705)

    • Search Google Scholar
    • Export Citation
  • 29

    Schisterman EF, Cole SR & Platt RW Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 2009 20 4884 95. (https://doi.org/10.1097/EDE.0b013e3181a819a1)

    • Search Google Scholar
    • Export Citation
  • 30

    Zhang Z, Cao Y, Tao Y, E M, Tang J, Liu Y & Li F Sulfonylurea and fracture risk in patients with type 2 diabetes mellitus: a meta-analysis. Diabetes Research and Clinical Practice 2020 159 107990. (https://doi.org/10.1016/j.diabres.2019.107990)

    • Search Google Scholar
    • Export Citation
  • 31

    Koromani F, Oei L, Shevroja E, Trajanoska K, Schoufour J, Muka T, Franco OH, Ikram MA, Zillikens MC & Uitterlinden AG Vertebral fractures in individuals with type 2 diabetes: more than skeletal complications alone. Diabetes Care 2020 43 137144. (https://doi.org/10.2337/dc19-0925)

    • Search Google Scholar
    • Export Citation
  • 32

    Ferrari SL, Abrahamsen B, Napoli N, Akesson K, Chandran M, Eastell R, El-Hajj Fuleihan G, Josse R, Kendler DL & Kraenzlin M Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporosis International 2018 29 25852596. (https://doi.org/10.1007/s00198-018-4650-2)

    • Search Google Scholar
    • Export Citation
  • 33

    Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, Arnol V & Sedlinsky C Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. Journal of Bone and Mineral Research 2010 25 2112 2 1. (https://doi.org/10.1359/jbmr.090732)

    • Search Google Scholar
    • Export Citation
  • 34

    Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, Jia CH, Wen ZH, Jin DD & Bai XC Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. Journal of Cellular Biochemistry 2011 112 2902290 9. (https://doi.org/10.1002/jcb.23206)

    • Search Google Scholar
    • Export Citation
  • 35

    Hur KY & Lee MS New mechanisms of metformin action: focusing on mitochondria and the gut. Journal of Diabetes Investigation 2015 6 60060 9. (https://doi.org/10.1111/jdi.12328)

    • Search Google Scholar
    • Export Citation
  • 36

    Khosla S, Farr JN, Tchkonia T & Kirkland JL The role of cellular senescence in ageing and endocrine disease. Nature Reviews: Endocrinology 2020 16 263275. (https://doi.org/10.1038/s41574-020-0335-y)

    • Search Google Scholar
    • Export Citation
  • 37

    Chen D, Xia D, Pan Z, Xu D, Zhou Y, Wu Y, Cai N, Tang Q, Wang C & Yan M Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo. Cell Death and Disease 2016 7 e2441. (https://doi.org/10.1038/cddis.2016.334)

    • Search Google Scholar
    • Export Citation
  • 38

    Tseng CH Metformin reduces risk of benign nodular goiter in patients with type 2 diabetes mellitus. European Journal of Endocrinology 2019 180 365372. (https://doi.org/10.1530/EJE-19-0133)

    • Search Google Scholar
    • Export Citation
  • 39

    Kesmodel US Information bias in epidemiological studies with a special focus on obstetrics and gynecology. Acta Obstetricia and Gynecologica Scandinavica 2018 97 417423. (https://doi.org/10.1111/aogs.13330)

    • Search Google Scholar
    • Export Citation