Pubertal induction in adolescents with DMD is associated with high satisfaction, gonadotropin release and increased muscle contractile surface area

in European Journal of Endocrinology
View More View Less
  • 1 Department of Paediatric Endocrinology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
  • 2 Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
  • 3 Department of Paediatrics, Nobles Hospital, Isle of Man, UK
  • 4 John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
  • 5 MRC Centre for Reproductive Health, Queens Medical Research Institute, Edinburgh, UK

Correspondence should be addressed to C L Wood; Email: claire.wood@ncl.ac.uk
Restricted access

Background

Pharmacological doses of glucocorticoids (GC) reduce inflammation and preserve muscle function in boys with Duchenne muscular dystrophy (DMD). Delayed puberty and bone fragility are consequences of GC treatment. The aim of this study was to determine the acceptability of a 2-year pubertal induction regimen using 4-weekly testosterone injections and examine changes in physique, bone integrity, muscle pathology (assessed by MRI) and muscle function.

Methods

Fifteen prepubertal males with DMD, aged 12–17 years and receiving GC, were treated with an incremental testosterone regimen for 2 years. Participants completed a Treatment Satisfaction Questionnaire (TSQM). Data on BMI, bone density, muscle pathology and function were collected at baseline and 2 years later.

Results

Testosterone injections were well tolerated, with high TSQM scores. Baseline BMI z-score was 2.16 (0.90) and 1.64 (1.35) 2 years later. Median testosterone levels were 9.7 nmol/L (IQR: 5.7–11.1) 6–9 months after the last injection with an associated increase in testicular volume. Lumbar spine z-score was 0.22 (s.d. 2.21) at baseline and 0.35 (s.d. 2.21) after 2 years. Upper and lower limb muscle contractile cross-sectional area increased in all participants during the trial (P = 0.05 and P < 0.01, respectively). There was a reduction in T2 relaxation times in most muscle groups with stable upper limb muscle function.

Conclusion

Incremental monthly testosterone injections were well tolerated, promoted endogenous testosterone production and had a positive impact on the skeleton and contractile muscle bulk with evidence suggesting a beneficial impact on the underlying disease process.

Supplementary Materials

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 94 94 94
Full Text Views 23 23 23
PDF Downloads 14 14 14
  • 1

    Emery AE Population frequencies of inherited neuromuscular diseases – a world survey. Neuromuscular Disorders 1991 1 1929. (https://doi.org/10.1016/0960-8966(9190039-u)

    • Search Google Scholar
    • Export Citation
  • 2

    Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, Watt DJ, Dickson JG, Tinsley JM & Davies KE Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 1997 90 717727. (https://doi.org/10.1016/s0092-8674(0080532-2)

    • Search Google Scholar
    • Export Citation
  • 3

    Moxley RT, Pandya S, Ciafaloni E, Fox DJ & Campbell K Change in natural history of Duchenne muscular dystrophy with long-term corticosteroid treatment: implications for management. Journal of Child Neurology 2010 25 11161129. (https://doi.org/10.1177/0883073810371004)

    • Search Google Scholar
    • Export Citation
  • 4

    Daftary AS, Crisanti M, Kalra M, Wong B & Amin R Effect of long-term steroids on cough efficiency and respiratory muscle strength in patients with Duchenne muscular dystrophy. Pediatrics 2007 119 e320e32 4. (https://doi.org/10.1542/peds.2006-1400)

    • Search Google Scholar
    • Export Citation
  • 5

    Lebel DE, Corston JA, McAdam LC, Biggar WD & Alman BA Glucocorticoid treatment for the prevention of scoliosis in children with Duchenne muscular dystrophy: long-term follow-up. Journal of Bone and Joint Surgery: American Volume 2013 95 10571061. (https://doi.org/10.2106/JBJS.L.01577)

    • Search Google Scholar
    • Export Citation
  • 6

    Wood CL, Straub V, Guglieri M, Bushby K & Cheetham T Short stature and pubertal delay in Duchenne muscular dystrophy. Archives of Disease in Childhood 2016 101 101106. (https://doi.org/10.1136/archdischild-2015-308654)

    • Search Google Scholar
    • Export Citation
  • 7

    Wang C, Alexander G, Berman N, Salehian B, Davidson T, McDonald V, Steiner B, Hull L, Callegari C & Swerdloff RS Testosterone replacement therapy improves mood in hypogonadal men – a clinical research center study. Journal of Clinical Endocrinology and Metabolism 1996 81 35783583. (https://doi.org/10.1210/jcem.81.10.8855804)

    • Search Google Scholar
    • Export Citation
  • 8

    Wood CL, Cheetham TD, Guglieri M, Bushby K, Owen C, Johnstone H & Straub V Testosterone treatment of pubertal delay in Duchenne muscular dystrophy. Neuropediatrics 2015 46 371376. (https://doi.org/10.1055/s-0035-1563696)

    • Search Google Scholar
    • Export Citation
  • 9

    Wood CL, Cheetham TD, Hollingsworth KG, Guglieri M, Ailins-Sahun Y, Punniyakodi S, Mayhew A & Straub V Observational study of clinical outcomes for testosterone treatment of pubertal delay in Duchenne muscular dystrophy. BMC Pediatrics 2019 19 131. (https://doi.org/10.1186/s12887-019-1503-x)

    • Search Google Scholar
    • Export Citation
  • 10

    Atkinson MJ, Sinha A, Hass SL, Colman SS, Kumar RN, Brod M & Rowland CR Validation of a general measure of treatment satisfaction, the Treatment Satisfaction Questionnaire for Medication (TSQM), using a national panel study of chronic disease. Health and Quality of Life Outcomes 2004 2 12. (https://doi.org/10.1186/1477-7525-2-12)

    • Search Google Scholar
    • Export Citation
  • 11

    Marshall WA & Tanner JM Variations in the pattern of pubertal changes in boys. Archives of Disease in Childhood 1970 45 1323. (https://doi.org/10.1136/adc.45.239.13)

    • Search Google Scholar
    • Export Citation
  • 12

    Greulich WW & Pyle SI Radiographic Atlas of Skeletal Development of the Hand and Wrist, 2nd ed. California: Stanford University Press, 1959.

  • 13

    Mayhew A, Mazzone ES, Eagle M, Duong T, Ash M, Decostre V, Vandenhauwe M, Klingels K, Florence J & Main M et al. Development of the performance of the upper limb module for Duchenne muscular dystrophy. Developmental Medicine and Child Neurology 2013 55 10381045. (https://doi.org/10.1111/dmcn.12213)

    • Search Google Scholar
    • Export Citation
  • 14

    Mayhew AG, Cano SJ, Scott E, Eagle M, Bushby K, Manzur A, Muntoni FNorth Star Clinical Network for Neuromuscular Disease. Detecting meaningful change using the North Star Ambulatory Assessment in Duchenne muscular dystrophy. Developmental Medicine and Child Neurology 2013 55 10461052. (https://doi.org/10.1111/dmcn.12220)

    • Search Google Scholar
    • Export Citation
  • 15

    Hollingsworth KG, Higgins DM, McCallum M, Ward L, Coombs A & Straub V Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction. Magnetic Resonance in Medicine 2014 72 16101619. (https://doi.org/10.1002/mrm.25072)

    • Search Google Scholar
    • Export Citation
  • 16

    Loughran T, Higgins DM, McCallum M, Coombs A, Straub V & Hollingsworth KG Improving highly accelerated fat fraction measurements for clinical trials in muscular dystrophy: origin and quantitative effect of R2* changes. Radiology 2015 275 570578. (https://doi.org/10.1148/radiol.14141191)

    • Search Google Scholar
    • Export Citation
  • 17

    Carlier PG Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: different methodology, different information and different implications. Neuromuscular Disorders 2014 24 390392. (https://doi.org/10.1016/j.nmd.2014.02.009) .

    • Search Google Scholar
    • Export Citation
  • 18

    Ricotti V, Evans MRB, Sinclair CDJ, Butler JW, Ridout DA, Hogrel JY, Emira A, Morrow JM, Reilly MM & Hanna MG et al. Upper limb evaluation in Duchenne muscular dystrophy: fat-water quantification by MRI, muscle force and function define endpoints for clinical trials. PLoS ONE 2016 11 e0162542. (https://doi.org/10.1371/journal.pone.0162542)

    • Search Google Scholar
    • Export Citation
  • 19

    Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, Case LE, Clemens PR, Hadjiyannakis S & Pandya S et al. Diagnosis and management of Duchenne muscular dystrophy, Part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet: Neurology 2018 17 251267. (https://doi.org/10.1016/S1474-4422(1830024-3)

    • Search Google Scholar
    • Export Citation
  • 20

    Sakakura M, Takebe K & Nakagawa S Inhibition of luteinizing hormone secretion induced by synthetic LRH by long-term treatment with glucocorticoids in human subjects. Journal of Clinical Endocrinology and Metabolism 1975 40 774779. (https://doi.org/10.1210/jcem-40-5-774)

    • Search Google Scholar
    • Export Citation
  • 21

    MacAdams MR, White RH & Chipps BE Reduction of serum testosterone levels during chronic glucocorticoid therapy. Annals of Internal Medicine 1986 104 648651. (https://doi.org/10.7326/0003-4819-104-5-648)

    • Search Google Scholar
    • Export Citation
  • 22

    Biggar WD, Harris VA, Eliasoph L & Alman B Long-term benefits of deflazacort treatment for boys with Duchenne muscular dystrophy in their second decade. Neuromuscular Disorders 2006 16 249255. (https://doi.org/10.1016/j.nmd.2006.01.010)

    • Search Google Scholar
    • Export Citation
  • 23

    Annexstad EJ, Bollerslev J, Westvik J, Myhre AG, Godang K, Holm I & Rasmussen M The role of delayed bone age in the evaluation of stature and bone health in glucocorticoid treated patients with Duchenne muscular dystrophy. International Journal of Pediatric Endocrinology 2019 2019 4. (https://doi.org/10.1186/s13633-019-0070-0)

    • Search Google Scholar
    • Export Citation
  • 24

    Al-Zougbi A, Mathews KD & Shibli-Rahhal A Use of bone age for evaluating bone density in patients with Duchenne muscular dystrophy: a preliminary report. Muscle and Nerve 2019 59 422425. (https://doi.org/10.1002/mus.26413)

    • Search Google Scholar
    • Export Citation
  • 25

    Larson CM & Henderson RC Bone mineral density and fractures in boys with Duchenne muscular dystrophy. Journal of Pediatric Orthopedics 2000 20 7174. (https://doi.org/10.1097/01241398-200001000-00016)

    • Search Google Scholar
    • Export Citation
  • 26

    McDonald DG, Kinali M, Gallagher AC, Mercuri E, Muntoni F, Roper H, Jardine P, Jones DH & Pike MG Fracture prevalence in Duchenne muscular dystrophy. Developmental Medicine and Child Neurology 2002 44 695698. (https://doi.org/10.1017/s0012162201002778)

    • Search Google Scholar
    • Export Citation
  • 27

    King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, Mendell JR & Kissel JT Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology 2007 68 16071613. (https://doi.org/10.1212/01.wnl.0000260974.41514.83)

    • Search Google Scholar
    • Export Citation
  • 28

    James KA, Cunniff C, Apkon SD, Mathews K, Lu Z, Holtzer C, Pandya S, Ciafaloni E & Miller L Risk factors for first fractures among males with duchenne or Becker muscular dystrophy. Journal of Pediatric Orthopedics 2015 35 640644. (https://doi.org/10.1097/BPO.0000000000000348)

    • Search Google Scholar
    • Export Citation
  • 29

    Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ & Klibanski A Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. Journal of Clinical Endocrinology and Metabolism 1996 81 43584365. (https://doi.org/10.1210/jcem.81.12.8954042)

    • Search Google Scholar
    • Export Citation
  • 30

    Mayhew AG, Coratti G, Mazzone ES, Klingels K, James M, Pane M, Straub V, Goemans N, Mercuri E & Ricotti V et al. Performance of upper limb module for Duchenne muscular dystrophy. Developmental Medicine and Child Neurology 2020 63 633–639. (https://doi.org/10.1111/dmcn.14361)

    • Search Google Scholar
    • Export Citation
  • 31

    Mercuri E, Coratti G, Messina S, Ricotti V, Baranello G, D’Amico A, Pera MC, Albamonte E, Sivo S & Mazzone ES et al. Revised north star ambulatory assessment for young boys with Duchenne muscular dystrophy. PLoS ONE 2016 11 e0160195. (https://doi.org/10.1371/journal.pone.0160195)

    • Search Google Scholar
    • Export Citation
  • 32

    Wary C, Azzabou N, Giraudeau C, Louër J, Le Montus M, Voit T, Servais L & Carlier P Quantitative NMRI and NMRS identify augmented disease progression after loss of ambulation in forearms of boys with Duchenne muscular dystrophy. NMR in Biomedicine 2015 28 11501162. (https://doi.org/10.1002/nbm.3352)

    • Search Google Scholar
    • Export Citation
  • 33

    Hogrel JY, Wary C, Moraux A, Azzabou N, Decostre V, Ollivier G, Canal A, Lilien C, Ledoux I & Annoussamy M et al. Longitudinal functional and NMR assessment of upper limbs in Duchenne muscular dystrophy. Neurology 2016 86 10221030. (https://doi.org/10.1212/WNL.0000000000002464)

    • Search Google Scholar
    • Export Citation
  • 34

    Li GW, Xu Z, Chen QW, Chang SX, Tian YN & Fan JZ The temporal characterization of marrow lipids and adipocytes in a rabbit model of glucocorticoid-induced osteoporosis. Skeletal Radiology 2013 42 12351244. (https://doi.org/10.1007/s00256-013-1659-7)

    • Search Google Scholar
    • Export Citation
  • 35

    Lovdel A, Suchacki K, Sulston RJ, Wallace RJ, Macpherson G, Stimson RH, Homer NZ, Chapman KE & Cawthorn WP Investigating glucocorticoids as mediators of increased bone marrow adiposity during caloric restriction. Endocrine Abstracts 2018 56 GP58. (https://doi.org/10.1530/endoabs.56.GP58)

    • Search Google Scholar
    • Export Citation
  • 36

    Ito S, Suzuki N, Kato S, Takahashi T & Takagi M Glucocorticoids induce the differentiation of a mesenchymal progenitor cell line, ROB-C26 into adipocytes and osteoblasts, but fail to induce terminal osteoblast differentiation. Bone 2007 40 8492. (https://doi.org/10.1016/j.bone.2006.07.012)

    • Search Google Scholar
    • Export Citation
  • 37

    Tencerova M & Kassem M The bone marrow-derived stromal cells: commitment and regulation of adipogenesis. Frontiers in Endocrinology 2016 7 127. (https://doi.org/10.3389/fendo.2016.00127)

    • Search Google Scholar
    • Export Citation
  • 38

    Paccou J, Hardouin P, Cotten A, Penel G & Cortet B The role of bone marrow fat in skeletal health: usefulness and perspectives for clinicians. Journal of Clinical Endocrinology and Metabolism 2015 100 36133621. (https://doi.org/10.1210/jc.2015-2338)

    • Search Google Scholar
    • Export Citation
  • 39

    Willcocks RJ, Triplett WT, Forbes SC, Arora H, Senesac CR, Lott DJ, Nicholson TR, Rooney WD, Walter GA & Vandenborne K Magnetic resonance imaging of the proximal upper extremity musculature in boys with Duchenne muscular dystrophy. Journal of Neurology 2017 264 6471. (https://doi.org/10.1007/s00415-016-8311-0)

    • Search Google Scholar
    • Export Citation
  • 40

    Arpan I, Willcocks RJ, Forbes SC, Finkel RS, Lott DJ, Rooney WD, Triplett WT, Senesac CR, Daniels MJ & Byrne BJ et al. Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology 2014 83 974980. (https://doi.org/10.1212/WNL.0000000000000775)

    • Search Google Scholar
    • Export Citation
  • 41

    Bianchi VE The anti-inflammatory effects of testosterone. Journal of the Endocrine Society 2019 3 91107. (https://doi.org/10.1210/js.2018-00186)

    • Search Google Scholar
    • Export Citation
  • 42

    Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS & Jones TH The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. Journal of Clinical Endocrinology and Metabolism 2004 89 33133318. (https://doi.org/10.1210/jc.2003-031069)

    • Search Google Scholar
    • Export Citation