Thyroid cancer after hysterectomy and oophorectomy: a nationwide cohort study

in European Journal of Endocrinology
View More View Less
  • 1 Department of Internal Medicine, Clinical Trial Center, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
  • 2 Academic Research Organization, Clinical Trial Center, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
  • 3 Hanmi Pharmaceuticals Co. Ltd., Seoul, Korea

Correspondence should be addressed to B H Kim; Email: pons71@hanmail.net
Restricted access

Objective

Little is known about the role of estrogen in thyroid cancer development. We aimed to evaluate the association between hysterectomy or bilateral salpingo-oophorectomy (BSO) and the risk of subsequent thyroid cancer.

Design

A nationwide cohort study

Methods

Data from the Korea National Health Insurance Service between 2002 and 2017 were used. A total of 78 961 and 592 330 women were included in the surgery group and no surgery group, respectively. The surgery group was categorized into two groups according to the extent of surgery: hysterectomy with ovarian conservation (hysterectomy-only) and BSO with or without hysterectomy (BSO).

Results

During 8 086 396.4 person-years of follow-up, 12 959 women developed thyroid cancer. Women in the hysterectomy-only (adjusted hazard ratio = 1.7, P < 0.001) and BSO (adjusted hazard ratio = 1.4, P < 0.001) groups had increased risk of thyroid cancer compared to those in the no surgery group. In premenopausal women, hysterectomy-only (adjusted hazard ratio = 1.7, P < 0.001) or BSO (adjusted hazard ratio = 1.4, P < 0.001) increased the risk of subsequent thyroid cancer, irrespective of hormone therapy, whereas, there was no significant association between hysterectomy-only (P = 0.204) or BSO (P = 0.857) and thyroid cancer development in postmenopausal women who had undergone hormone therapy.

Conclusions

Our findings do not support the hypotheses that sudden or early gradual decline in estrogen levels is a protective factor in the development of thyroid cancer, or that exogenous estrogen is a risk factor for thyroid cancer.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 60 60 60
Full Text Views 2 2 2
PDF Downloads 2 2 2
  • 1

    Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G & Woodbrook R et al. The global burden of cancer 2013. JAMA Oncology 2015 1 505527. (https://doi.org/10.1001/jamaoncol.2015.0735)

    • Search Google Scholar
    • Export Citation
  • 2

    Lubitz CC, Kong CY, McMahon PM, Daniels GH, Chen Y, Economopoulos KP, Gazelle GS & Weinstein MC Annual financial impact of well-differentiated thyroid cancer care in the United States. Cancer 2014 120 13451352. (https://doi.org/10.1002/cncr.28562)

    • Search Google Scholar
    • Export Citation
  • 3

    Li N, Du XL, Reitzel LR, Xu L & Sturgis EM Impact of enhanced detection on the increase in thyroid cancer incidence in the United States: review of incidence trends by socioeconomic status within the surveillance, epidemiology, and end results registry, 1980–2008. Thyroid 2013 23 103110. (https://doi.org/10.1089/thy.2012.0392)

    • Search Google Scholar
    • Export Citation
  • 4

    Jung KW, Won YJ, Kong HJ & Lee ES Prediction of cancer incidence and mortality in Korea, 2018. Cancer Research and Treatment 2018 50 317323. (https://doi.org/10.4143/crt.2018.142)

    • Search Google Scholar
    • Export Citation
  • 5

    Manole D, Schildknecht B, Gosnell B, Adams E & Derwahl M Estrogen promotes growth of human thyroid tumor cells by different molecular mechanisms. Journal of Clinical Endocrinology and Metabolism 2001 86 10721077. (https://doi.org/10.1210/jcem.86.3.7283)

    • Search Google Scholar
    • Export Citation
  • 6

    Rajoria S, Suriano R, Shanmugam A, Wilson YL, Schantz SP, Geliebter J & Tiwari RK Metastatic phenotype is regulated by estrogen in thyroid cells. Thyroid 2010 20 3341. (https://doi.org/10.1089/thy.2009.0296)

    • Search Google Scholar
    • Export Citation
  • 7

    Xu S, Chen G, Peng W, Renko K & Derwahl M Oestrogen action on thyroid progenitor cells: relevant for the pathogenesis of thyroid nodules? Journal of Endocrinology 2013 218 125133. (https://doi.org/10.1530/JOE-13-0029)

    • Search Google Scholar
    • Export Citation
  • 8

    Zane M, Parello C, Pennelli G, Townsend DM, Merigliano S, Boscaro M, Toniato A, Baggio G, Pelizzo MR & Rubello D et al. Estrogen and thyroid cancer is a stem affair: a preliminary study. Biomedicine and Pharmacotherapy 2017 85 399411. (https://doi.org/10.1016/j.biopha.2016.11.043)

    • Search Google Scholar
    • Export Citation
  • 9

    Derwahl M & Nicula D Estrogen and its role in thyroid cancer. Endocrine-Related Cancer 2014 21 T273T 283. (https://doi.org/10.1530/ERC-14-0053)

    • Search Google Scholar
    • Export Citation
  • 10

    Luo J, Hendryx M, Manson JE, Liang X & Margolis KL Hysterectomy, oophorectomy, and risk of thyroid cancer. Journal of Clinical Endocrinology and Metabolism 2016 101 38123819. (https://doi.org/10.1210/jc.2016-2011)

    • Search Google Scholar
    • Export Citation
  • 11

    Mack WJ, Preston-Martin S, Bernstein L, Qian D & Xiang M Reproductive and hormonal risk factors for thyroid cancer in los Angeles County females. Cancer Epidemiology, Biomarkers and Prevention 1999 8 991997.

    • Search Google Scholar
    • Export Citation
  • 12

    Wu JM, Wechter ME, Geller EJ, Nguyen TV & Visco AG Hysterectomy rates in the United States, 2003. Obstetrics and Gynecology 2007 110 10911095. (https://doi.org/10.1097/01.AOG.0000285997.38553.4b)

    • Search Google Scholar
    • Export Citation
  • 13

    Tamhane N, Imudia AN & Mikhail E Contemporary management of adnexa at the time of benign hysterectomy: a review of the literature. Journal of Obstetrics and Gynaecology 2019 39 896902. (https://doi.org/10.1080/01443615.2019.1581747)

    • Search Google Scholar
    • Export Citation
  • 14

    Laughlin GA, Barrett-Connor E, Kritz-Silverstein D & von Muhlen D Hysterectomy, oophorectomy, and endogenous sex hormone levels in older women: the Rancho Bernardo Study. Journal of Clinical Endocrinology and Metabolism 2000 85 645651. (https://doi.org/10.1210/jcem.85.2.6405)

    • Search Google Scholar
    • Export Citation
  • 15

    Xiangying H, Lili H & Yifu S The effect of hysterectomy on ovarian blood supply and endocrine function. Climacteric 2006 9 283289. (https://doi.org/10.1080/13697130600865774)

    • Search Google Scholar
    • Export Citation
  • 16

    Farquhar CM, Sadler L, Harvey SA & Stewart AW The association of hysterectomy and menopause: a prospective cohort study. BJOG 2005 112 956962. (https://doi.org/10.1111/j.1471-0528.2005.00696.x)

    • Search Google Scholar
    • Export Citation
  • 17

    Cheol Seong S, Kim YY, Khang YH, Heon Park J, Kang HJ, Lee H, Do CH, Song JS, Hyon Bang J & Ha S et al. Data resource profile: the National Health Information Database of the National Health Insurance Service in South Korea. International Journal of Epidemiology 2017 46 799800. (https://doi.org/10.1093/ije/dyw253)

    • Search Google Scholar
    • Export Citation
  • 18

    Hwang YJ, Kim N, Yun CY, Yoon H, Shin CM, Park YS, Son IT, Oh HK, Kim DW & Kang SB et al. Validation of administrative big database for colorectal cancer searched by international classification of disease 10th codes in Korean: a retrospective big-cohort study. Journal of Cancer Prevention 2018 23 183190. (https://doi.org/10.15430/JCP.2018.23.4.183)

    • Search Google Scholar
    • Export Citation
  • 19

    Ceresini G, Milli B, Morganti S, Maggio M, Bacchi-Modena A, Sgarabotto MP, Chirico C, Di Donato P, Campanati P & Valcavi R et al. Effect of estrogen therapy for 1 year on thyroid volume and thyroid nodules in postmenopausal women. Menopause 2008 15 326331. (https://doi.org/10.1097/gme.0b013e318148b83e)

    • Search Google Scholar
    • Export Citation
  • 20

    Furlanetto TW, Nguyen LQ & Jameson JL Estradiol increases proliferation and down-regulates the sodium/iodide symporter gene in FRTL-5 cells. Endocrinology 1999 140 57055711. (https://doi.org/10.1210/endo.140.12.7197)

    • Search Google Scholar
    • Export Citation
  • 21

    Adelman MR & Sharp HT Ovarian conservation vs removal at the time of benign hysterectomy. American Journal of Obstetrics and Gynecology 2018 218 269279. (https://doi.org/10.1016/j.ajog.2017.07.037)

    • Search Google Scholar
    • Export Citation
  • 22

    Zeng Q, Chen GG, Vlantis AC & van Hasselt CA Oestrogen mediates the growth of human thyroid carcinoma cells via an oestrogen receptor-ERK pathway. Cell Proliferation 2007 40 921935. (https://doi.org/10.1111/j.1365-2184.2007.00471.x)

    • Search Google Scholar
    • Export Citation
  • 23

    Chen GG, Vlantis AC, Zeng Q & van Hasselt CA Regulation of cell growth by estrogen signaling and potential targets in thyroid cancer. Current Cancer Drug Targets 2008 8 367377. (https://doi.org/10.2174/156800908785133150)

    • Search Google Scholar
    • Export Citation
  • 24

    Kumar A, Klinge CM & Goldstein RE Estradiol-induced proliferation of papillary and follicular thyroid cancer cells is mediated by estrogen receptors alpha and beta. International Journal of Oncology 2010 36 10671080. (https://doi.org/10.3892/ijo_00000588)

    • Search Google Scholar
    • Export Citation
  • 25

    Luoto R, Auvinen A, Pukkala E & Hakama M Hysterectomy and subsequent risk of cancer. International Journal of Epidemiology 1997 26 476483. (https://doi.org/10.1093/ije/26.3.476)

    • Search Google Scholar
    • Export Citation
  • 26

    Rossing MA, Voigt LF, Wicklund KG & Daling JR Reproductive factors and risk of papillary thyroid cancer in women. American Journal of Epidemiology 2000 151 765772. (https://doi.org/10.1093/oxfordjournals.aje.a010276)

    • Search Google Scholar
    • Export Citation
  • 27

    Kim MH, Park YR, Lim DJ, Yoon KH, Kang MI, Cha BY, Lee KW & Son HY The relationship between thyroid nodules and uterine fibroids. Endocrine Journal 2010 57 615621. (https://doi.org/10.1507/endocrj.k10e-024)

    • Search Google Scholar
    • Export Citation
  • 28

    Liu Y, Su L & Xiao H Review of factors related to the thyroid cancer epidemic. International Journal of Endocrinology 2017 2017 5308635. (https://doi.org/10.1155/2017/5308635)

    • Search Google Scholar
    • Export Citation
  • 29

    Renehan AG, Tyson M, Egger M, Heller RF & Zwahlen M Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008 371 569578. (https://doi.org/10.1016/S0140-6736(0860269-X)

    • Search Google Scholar
    • Export Citation
  • 30

    Kitahara CM, Linet MS, Beane Freeman LE, Check DP, Church TR, Park Y, Purdue MP, Schairer C & Berrington de Gonzalez A Cigarette smoking, alcohol intake, and thyroid cancer risk: a pooled analysis of five prospective studies in the United States. Cancer Causes and Control 2012 23 16151624. (https://doi.org/10.1007/s10552-012-0039-2)

    • Search Google Scholar
    • Export Citation
  • 31

    Chen YK, Lin CL, Cheng FT, Sung FC & Kao CH Cancer risk in patients with Hashimoto’s thyroiditis: a nationwide cohort study. British Journal of Cancer 2013 109 24962501. (https://doi.org/10.1038/bjc.2013.597)

    • Search Google Scholar
    • Export Citation
  • 32

    Ahn HS, Kim HJ & Welch HG Korea’s thyroid-cancer ‘epidemic’ – screening and overdiagnosis. New England Journal of Medicine 2014 371 17651767. (https://doi.org/10.1056/NEJMp1409841)

    • Search Google Scholar
    • Export Citation
  • 33

    Udelsman R & Zhang Y The epidemic of thyroid cancer in the United States: the role of endocrinologists and ultrasounds. Thyroid 2014 24 472479. (https://doi.org/10.1089/thy.2013.0257)

    • Search Google Scholar
    • Export Citation