Re-visiting autoimmunity to sodium-iodide symporter and pendrin in thyroid disease

in European Journal of Endocrinology
View More View Less
  • 1 Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

Correspondence should be addressed to L Schomburg; Email: lutz.schomburg@charite.de
Restricted access

Objective

Iodide transport across thyrocytes constitutes a critical step for thyroid hormone biosynthesis, mediated mainly by the basolateral sodium-iodide-symporter (NIS (SLC5A5)) and the apical anion exchanger pendrin (PDS (SLC26A4)). Both transmembrane proteins have been described as autoantigens in thyroid disease, yet the reports on autoantibody (aAb) prevalence and diagnostic usefulness are conflicting. Reasons for the inconclusive findings may be small study groups and principle differences in the technologies used.

Design

We decided to re-evaluate this important issue by establishing novel non-radioactive tests using full-length antigens and comparable protocols, and analyzing a large cohort of thyroid patients (n = 323) and control samples (n = 400).

Methods

NIS and PDS were recombinantly expressed as fusion protein with firefly luciferase (Luc). Stably transfected HEK293 cells were used as reproducible source of the autoantigens.

Results

Recombinant NIS-Luc showed iodide transport activity, indicating successful expression and correct processing. Commercial antibodies yielded dose-dependent responses in the newly established assays. Reproducibility of assay signals from patient sera was verified with respect to linearity, stability and absence of matrix effects. Prevalence of PDS-aAb was similar in thyroid patients and controls (7.7% vs 5.0%). NIS-aAb were more prevalent in patients than controls (7.7% vs 1.8%), especially in Graves’ Disease (12.3%). Neither NIS-aAb nor PDS-aAb concentrations were related to TPO-aAb or TSH-receptor-aAb concentrations, or to serum zinc or selenium status.

Conclusions

Our data highlight a potential relevance of autoimmunity against NIS for thyroid disease, whereas an assessment of PDS-aAb in thyroid patients seems not to be of diagnostic value (yet).

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 118 118 118
Full Text Views 14 14 14
PDF Downloads 9 9 9
  • 1

    McLeod DS & Cooper DS The incidence and prevalence of thyroid autoimmunity. Endocrine 2012 42 2522 65. (https://doi.org/10.1007/s12020-012-9703-2)

    • Search Google Scholar
    • Export Citation
  • 2

    Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A & Fallahi P Autoimmune thyroid disorders. Autoimmunity Reviews 2015 14 1741 80. (https://doi.org/10.1016/j.autrev.2014.10.016)

    • Search Google Scholar
    • Export Citation
  • 3

    Matana A, Popovic M, Boutin T, Torlak V, Brdar D, Gunjaca I, Kolcic I, Boraska V, Punda A & Polasek O Genome-wide meta-analysis identifies novel gender specific loci associated with thyroid antibodies level in Croatians. Genomics 2019 111 7377 43. (https://doi.org/10.1016/j.ygeno.2018.04.012)

    • Search Google Scholar
    • Export Citation
  • 4

    Qin J, Li L, Jin Q, Guo D, Liu M, Fan C, Li J, Shan Z & Teng W Estrogen receptor beta activation stimulates the development of experimental autoimmune thyroiditis through up-regulation of Th17-type responses. Clinical Immunology 2018 190 4152. (https://doi.org/10.1016/j.clim.2018.02.006)

    • Search Google Scholar
    • Export Citation
  • 5

    Wang Y, Zhao F, Rijntjes E, Wu L, Wu Q, Sui J, Liu Y, Zhang M, He M & Chen P Role of selenium intake for risk and development of hyperthyroidism. Journal of Clinical Endocrinology and Metabolism 2019 104 5685 80. (https://doi.org/10.1210/jc.2018-01713)

    • Search Google Scholar
    • Export Citation
  • 6

    Schott M, Eckstein A, Willenberg HS, Nguyen TB, Morgenthaler NG & Scherbaum WA Improved prediction of relapse of Graves’ thyrotoxicosis by combined determination of TSH receptor and thyroperoxidase antibodies. Hormone and Metabolic Research 2007 39 5661. (https://doi.org/10.1055/s-2007-957347)

    • Search Google Scholar
    • Export Citation
  • 7

    Kahaly GJ, Diana T, Kanitz M, Frommer L & Olivo PD Prospective trial of functional thyrotropin receptor antibodies in Graves disease. Journal of Clinical Endocrinology and Metabolism 2020 105. (https://doi.org/10.1210/clinem/dgz292)

    • Search Google Scholar
    • Export Citation
  • 8

    McLachlan SM & Rapoport B Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid 2013 23 1424. (https://doi.org/10.1089/thy.2012.0374)

    • Search Google Scholar
    • Export Citation
  • 9

    Volzke H, Ludemann J, Robinson DM, Spieker KW, Schwahn C, Kramer A, John U & Meng W The prevalence of undiagnosed thyroid disorders in a previously iodine-deficient area. Thyroid 2003 13 8038 10. (https://doi.org/10.1089/105072503768499680)

    • Search Google Scholar
    • Export Citation
  • 10

    Bach JF The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nature Reviews: Immunology 2018 18 1051 20. (https://doi.org/10.1038/nri.2017.111)

    • Search Google Scholar
    • Export Citation
  • 11

    Kim D The role of vitamin D in thyroid diseases. International Journal of Molecular Sciences 2017 18 1949. (https://doi.org/10.3390/ijms18091949)

    • Search Google Scholar
    • Export Citation
  • 12

    Schomburg L Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nature Reviews: Endocrinology 2011 8 1601 71. (https://doi.org/10.1038/nrendo.2011.174)

    • Search Google Scholar
    • Export Citation
  • 13

    Ferrari SM, Fallahi P, Antonelli A & Benvenga S Environmental issues in thyroid diseases. Frontiers in Endocrinology 2017 8 50. (https://doi.org/10.3389/fendo.2017.00050)

    • Search Google Scholar
    • Export Citation
  • 14

    Iyer PC, Cabanillas ME, Waguespack SG, Hu MI, Thosani S, Lavis VR, Busaidy NL, Subudhi SK, Diab A & Dadu R Immune-related thyroiditis with immune checkpoint inhibitors. Thyroid 2018 28 124312 51. (https://doi.org/10.1089/thy.2018.0116)

    • Search Google Scholar
    • Export Citation
  • 15

    Guaraldi F, La Selva R, Sama MT, D’Angelo V, Gori D, Fava P, Fierro MT, Savoia P & Arvat E Characterization and implications of thyroid dysfunction induced by immune checkpoint inhibitors in real-life clinical practice: a long-term prospective study from a referral institution. Journal of Endocrinological Investigation 2018 41 5495 5 6. (https://doi.org/10.1007/s40618-017-0772-1)

    • Search Google Scholar
    • Export Citation
  • 16

    Endo T, Kogai T, Nakazato M, Saito T, Kaneshige M & Onaya T Autoantibody against Na+/I- symporter in the sera of patients with autoimmune thyroid disease. Biochemical and Biophysical Research Communications 1996 224 929 5. (https://doi.org/10.1006/bbrc.1996.0989)

    • Search Google Scholar
    • Export Citation
  • 17

    Heufelder AE, Joba W & Morgenthaler NG Autoimmunity involving the human sodium/iodide symporter: fact or fiction? Experimental and Clinical Endocrinology and Diabetes 2001 109 3540. (https://doi.org/10.1055/s-2001-11011)

    • Search Google Scholar
    • Export Citation
  • 18

    Thyroperoxidase CB Thyroglobulin, Na(+)/I(-) symporter, pendrin in thyroid autoimmunity. Frontiers in Bioscience 2011 16 783802. (https://doi.org/10.2741/3720)

    • Search Google Scholar
    • Export Citation
  • 19

    Minich WB, Dehina N, Welsink T, Schwiebert C, Morgenthaler NG, Kohrle J, Eckstein A & Schomburg L Autoantibodies to the IGF1 receptor in Graves’ orbitopathy. Journal of Clinical Endocrinology and Metabolism 2013 98 7527 60. (https://doi.org/10.1210/jc.2012-1771)

    • Search Google Scholar
    • Export Citation
  • 20

    Mehl S, Sun Q, Gorlich CL, Hackler J, Kopp JF, Renko K, Mittag J, Schwerdtle T & Schomburg L Cross-sectional analysis of trace element status in thyroid disease. Journal of Trace Elements in Medicine and Biology 2020 58 126430. (https://doi.org/10.1016/j.jtemb.2019.126430)

    • Search Google Scholar
    • Export Citation
  • 21

    Waltz F, Pillette L & Ambroise Y A nonradioactive iodide uptake assay for sodium iodide symporter function. Analytical Biochemistry 2010 396 919 5. (https://doi.org/10.1016/j.ab.2009.08.038)

    • Search Google Scholar
    • Export Citation
  • 22

    Schanze N, Jacobi SF, Rijntjes E, Mergler S, Del Olmo M, Hoefig CS, Khajavi N, Lehmphul I, Biebermann H & Mittag J 3-Iodothyronamine decreases expression of genes involved in iodide metabolism in mouse thyroids and inhibits iodide uptake in PCCL3 thyrocytes. Thyroid 2017 27 1122. (https://doi.org/10.1089/thy.2016.0182)

    • Search Google Scholar
    • Export Citation
  • 23

    Sandell EB & Kolthoff IM A micro method for the determination of catalytic activity on paper. I. Ultramicro determination of organic iodine. Bulletin de la Societe de chimie Biologique 1936 37 8996. (https://doi.org/10.1007/BF01476194)

    • Search Google Scholar
    • Export Citation
  • 24

    Johannes J, Jayarama-Naidu R, Meyer F, Wirth EK, Schweizer U, Schomburg L, Kohrle J & Renko K Silychristin, a flavonolignan derived from the milk thistle, is a potent inhibitor of the thyroid hormone transporter MCT8. Endocrinology 2016 157 16941 701. (https://doi.org/10.1210/en.2015-1933)

    • Search Google Scholar
    • Export Citation
  • 25

    Renko K, Hoefig CS, Dupuy C, Harder L, Schwiebert C, Kohrle J & Schomburg L A nonradioactive DEHAL assay for testing substrates, inhibitors, and monitoring endogenous activity. Endocrinology 2016 157 451645 25. (https://doi.org/10.1210/en.2016-1549)

    • Search Google Scholar
    • Export Citation
  • 26

    Schwiebert C, Kuhnen P, Becker NP, Welsink T, Keller T, Minich WB, Wiegand S & Schomburg L Antagonistic autoantibodies to insulin-like growth factor-1 receptor associate with poor physical strength. International Journal of Molecular Sciences 2020 21 463. (https://doi.org/10.3390/ijms21020463)

    • Search Google Scholar
    • Export Citation
  • 27

    Schuette A, Moghaddam A, Seemann P, Duda GN, Schmidmaier G & Schomburg L Treatment with recombinant human bone morphogenetic protein 7 leads to a transient induction of neutralizing autoantibodies in a subset of patients. BBA Clinical 2016 6 10010 7. (https://doi.org/10.1016/j.bbacli.2016.08.001)

    • Search Google Scholar
    • Export Citation
  • 28

    Kim D, Huang J, Billet A, Abu-Arish A, Goepp J, Matthes E, Tewfik MA, Frenkiel S & Hanrahan JW Pendrin mediates bicarbonate secretion and enhances cystic fibrosis transmembrane conductance regulator function in airway surface epithelia. American Journal of Respiratory Cell and Molecular Biology 2019 60 7057 16. (https://doi.org/10.1165/rcmb.2018-0158OC)

    • Search Google Scholar
    • Export Citation
  • 29

    Vanoni S, Scantamburlo G, Dossena S, Paulmichl M & Nofziger C Interleukin-mediated pendrin transcriptional regulation in airway and esophageal epithelia. International Journal of Molecular Sciences 2019 20 731. (https://doi.org/10.3390/ijms20030731)

    • Search Google Scholar
    • Export Citation
  • 30

    Karatas A, Erdem H, Karatas Z, Ozlu T & Cakmak B The effect of smoking on placental pendrin expression. Journal of Obstetrics and Gynaecology 2017 37 111 4. (https://doi.org/10.1080/01443615.2016.1174825)

    • Search Google Scholar
    • Export Citation
  • 31

    Rozenfeld J, Tal O, Kladnitsky O, Adler L, Efrati E, Carrithers SL, Alper SL & Zelikovic I Pendrin, a novel transcriptional target of the uroguanylin system. Cellular Physiology and Biochemistry 2013 32 2212 37. (https://doi.org/10.1159/000356641)

    • Search Google Scholar
    • Export Citation
  • 32

    Seshadri S, Lu X, Purkey MR, Homma T, Choi AW, Carter R, Suh L, Norton J, Harris KE & Conley DB Increased expression of the epithelial anion transporter pendrin/SLC26A4 in nasal polyps of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology 2015 136 1548.e7–1558.e7. (https://doi.org/10.1016/j.jaci.2015.05.024)

    • Search Google Scholar
    • Export Citation
  • 33

    Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA & Braverman LE Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): national health and nutrition examination survey (NHANES III). Journal of Clinical Endocrinology and Metabolism 2002 87 4894 99. (https://doi.org/10.1210/jcem.87.2.8182)

    • Search Google Scholar
    • Export Citation
  • 34

    Walsh JP, Bremner AP, Feddema P, Leedman PJ, Brown SJ & O’Leary P Thyrotropin and thyroid antibodies as predictors of hypothyroidism: a 13-year, longitudinal study of a community-based cohort using current immunoassay techniques. Journal of Clinical Endocrinology and Metabolism 2010 95 10951 1 04. (https://doi.org/10.1210/jc.2009-1977)

    • Search Google Scholar
    • Export Citation
  • 35

    Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA, Rawal R, Roef GL, Plantinga TS & Vermeulen SH Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genetics 2014 10 e1004123. (https://doi.org/10.1371/journal.pgen.1004123)

    • Search Google Scholar
    • Export Citation
  • 36

    Kemp EH, Sandhu HK, Watson PF & Weetman AP Low frequency of pendrin autoantibodies detected using a radioligand binding assay in patients with autoimmune thyroid disease. Journal of Clinical Endocrinology and Metabolism 2013 98 E309E3 13. (https://doi.org/10.1210/jc.2012-3683)

    • Search Google Scholar
    • Export Citation
  • 37

    Brix TH, Hegedus L, Weetman AP & Kemp HE Pendrin and NIS antibodies are absent in healthy individuals and are rare in autoimmune thyroid disease: evidence from a Danish twin study. Clinical Endocrinology 2014 81 4404 44. (https://doi.org/10.1111/cen.12434)

    • Search Google Scholar
    • Export Citation
  • 38

    Seissler J, Wagner S, Schott M, Lettmann M, Feldkamp J, Scherbaum WA & Morgenthaler NG Low frequency of autoantibodies to the human Na(+)/I(-) symporter in patients with autoimmune thyroid disease. Journal of Clinical Endocrinology and Metabolism 2000 85 46304 634. (https://doi.org/10.1210/jcem.85.12.7050)

    • Search Google Scholar
    • Export Citation
  • 39

    Morris JC, Bergert ER & Bryant WP Binding of immunoglobulin G from patients with autoimmune thyroid disease to rat sodium-iodide symporter peptides: evidence for the iodide transporter as an autoantigen. Thyroid 1997 7 5275 34. (https://doi.org/10.1089/thy.1997.7.527)

    • Search Google Scholar
    • Export Citation
  • 40

    Yoshida A, Hisatome I, Taniguchi S, Shirayoshi Y, Yamamoto Y, Miake J, Ohkura T, Akama T, Igawa O & Shigemasa C Pendrin is a novel autoantigen recognized by patients with autoimmune thyroid diseases. Journal of Clinical Endocrinology and Metabolism 2009 94 44244 8. (https://doi.org/10.1210/jc.2008-1732)

    • Search Google Scholar
    • Export Citation
  • 41

    Ajjan RA, Kemp EH, Waterman EA, Watson PF, Endo T, Onaya T & Weetman AP Detection of binding and blocking autoantibodies to the human sodium-iodide symporter in patients with autoimmune thyroid disease. Journal of Clinical Endocrinology and Metabolism 2000 85 2020202 7. (https://doi.org/10.1210/jcem.85.5.6526)

    • Search Google Scholar
    • Export Citation
  • 42

    Ravera S, Reyna-Neyra A, Ferrandino G, Amzel LM & Carrasco N The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annual Review of Physiology 2017 79 2612 89. (https://doi.org/10.1146/annurev-physiol-022516-034125)

    • Search Google Scholar
    • Export Citation
  • 43

    Portulano C, Paroder-Belenitsky M & Carrasco N The Na+/I- symporter (NIS): mechanism and medical impact. Endocrine Reviews 2014 35 1061 49. (https://doi.org/10.1210/er.2012-1036)

    • Search Google Scholar
    • Export Citation
  • 44

    Ajjan RA, Findlay C, Metcalfe RA, Watson PF, Crisp M, Ludgate M & Weetman AP The modulation of the human sodium iodide symporter activity by Graves’ disease sera. Journal of Clinical Endocrinology and Metabolism 1998 83 121712 21. (https://doi.org/10.1210/jcem.83.4.4701)

    • Search Google Scholar
    • Export Citation
  • 45

    Chin HS, Chin DK, Morgenthaler NG, Vassart G & Costagliola S Rarity of anti- Na+/I- symporter (NIS) antibody with iodide uptake inhibiting activity in autoimmune thyroid diseases (AITD). Journal of Clinical Endocrinology and Metabolism 2000 85 393739 40. (https://doi.org/10.1210/jcem.85.10.6884)

    • Search Google Scholar
    • Export Citation
  • 46

    Muller I, Zhang L, Giani C, Dayan CM, Ludgate ME & Grennan-Jones F The sodium iodide symporter is unlikely to be a thyroid/breast shared antigen. Journal of Endocrinological Investigation 2016 39 3233 31. (https://doi.org/10.1007/s40618-015-0368-6)

    • Search Google Scholar
    • Export Citation
  • 47

    Belguith-Maalej S, Hadj-Kacem H, Rebuffat SA, Mnif-Feki M, Nguyen B, Abid M, Gross R, Ayadi H & Peraldi-Roux S Absence of anti-pendrin auto-antibodies in the sera of Tunisian patients with autoimmune thyroid diseases. Clinical Laboratory 2010 56 335343

    • Search Google Scholar
    • Export Citation