Metabolic complications in acromegaly after neurosurgery: a meta-analysis

in European Journal of Endocrinology
View More View Less
  • 1 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
  • 2 Neuroendocrinology, Neuromed Institute, IRCCS, Pozzilli, Italy
  • 3 Medical Statistics and Information Technology, AFaR, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy

Correspondence should be addressed to A M Isidori; Email: andrea.isidori@uniroma1.it

*(A Cozzolino and T Feola contributed equally to this work)

Restricted access

Objective

Neurosurgery is the first-line treatment for acromegaly. Whether metabolic disorders are reversible after neurosurgery is still debated. The meta-analysis aimed to address the following questions: (i) Does neurosurgery affect glycolipid metabolism? (ii) Are these effects related to disease control or follow-up length?

Design

A meta-analysis and systematic review of the literature.

Methods

Three reviewers searched databases until August 2019 for prospective trials reporting glycometabolic outcomes after neurosurgery. Three other extracted outcomes, all assessed the risk of bias.

Results

Twenty studies were included. Neurosurgery significantly reduced fasting plasma glucose (FPG) (effect size (ES): −0.57 mmol/L, 95% CI: −0.82 to −0.31; P < 0.001), glucose load (ES: −1.10 mmol/L, 95% CI: −1.66 to −0.53; P < 0.001), glycosylated haemoglobin (HbA1c) (ES: −0.28%, 95% CI: −0.42 to −0.14; P < 0.001), fasting plasma insulin (FPI) (ES: −10.53 mU/L, 95% CI: −14.54 to −6.51; P < 0.001), homeostatic model assessment of insulin resistance (HOMA-IR) (ES: −1.98, 95% CI: −3.24 to −0.72; P = 0.002), triglycerides (TGDs) (ES: −0.28 mmol/L, 95% CI: −0.36 to −0.20; P < 0.001) and LDL-cholesterol (LDLC) (ES: −0.23 mmol/L, 95% CI: −0.45 to −0.02 mmol/L); P = 0.030) and increased HDL-cholesterol (HDLC) (ES: 0.21 mmol/L, 95% CI: 0.14 to 0.28; P < 0.001). Meta-regression analysis showed that follow-up length – not disease control – had a significant effect on FPG, with the greatest reduction in the shortest follow-up (beta = 0.012, s.e. = 0.003; P = 0.001).

Conclusions

Neurosurgery improves metabolism with a significant decrease in FPG, glucose load, HbA1c, FPI, HOMA-IR, TGDs, and LDLC and increase in HDLC. The effect on FPG seems to be more related to follow-up length than to disease control.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 656 656 111
Full Text Views 77 77 11
PDF Downloads 50 50 9
  • 1

    Colao A, Ferone D, Marzullo P & Lombardi G Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocrine Reviews 2004 25 102152. (https://doi.org/10.1210/er.2002-0022)

    • Search Google Scholar
    • Export Citation
  • 2

    Dekkers OM, Biermasz NR, Pereira AM, Romijn JA & Vandenbroucke JP Mortality in acromegaly: a metaanalysis. Journal of Clinical Endocrinology and Metabolism 2008 93 6167. (https://doi.org/10.1210/jc.2007-1191)

    • Search Google Scholar
    • Export Citation
  • 3

    Melmed S Medical progress: acromegaly. New England Journal of Medicine 2006 355 25582573. (https://doi.org/10.1056/NEJMra062453)

  • 4

    Pivonello R, Auriemma RS, Grasso LF, Pivonello C, Simeoli C, Patalano R, Galdiero M & Colao A Complications of acromegaly: cardiovascular, respiratory and metabolic comorbidities. Pituitary 2017 20 4662. (https://doi.org/10.1007/s11102-017-0797-7)

    • Search Google Scholar
    • Export Citation
  • 5

    Frara S, Maffezzoni F, Mazziotti G & Giustina A Current and emerging aspects of diabetes mellitus in acromegaly. Trends in Endocrinology and Metabolism 2016 27 470483. (https://doi.org/10.1016/j.tem.2016.04.014)

    • Search Google Scholar
    • Export Citation
  • 6

    Kasayama S, Otsuki M, Takagi M, Saito H, Sumitani S, Kouhara H, Koga M, Saitoh Y, Ohnishi T & Arita N Impaired beta-cell function in the presence of reduced insulin sensitivity determines glucose tolerance status in acromegalic patients. Clinical Endocrinology 2000 52 549555. (https://doi.org/10.1046/j.1365-2265.2000.00986.x)

    • Search Google Scholar
    • Export Citation
  • 7

    Niculescu DA, Dusceac R, Caragheorgheopol A, Popescu N & Poiana C Disposition index in active acromegaly. Frontiers in Endocrinology 2019 10 637. (https://doi.org/10.3389/fendo.2019.00637)

    • Search Google Scholar
    • Export Citation
  • 8

    Wang Z, Gao L, Guo X, Feng C, Deng K, Lian W, Feng M, Bao X & Xing B Preoperative fasting C-peptide acts as a promising predictor of improved glucose tolerance in patients with acromegaly after transsphenoidal surgery: a retrospective study of 64 cases from a large pituitary center in China. Frontiers in Endocrinology 2019 10 736. (https://doi.org/10.3389/fendo.2019.00736)

    • Search Google Scholar
    • Export Citation
  • 9

    Olarescu NC & Bollerslev J The impact of adipose tissue on insulin resistance in acromegaly. Trends in Endocrinology and Metabolism 2016 27 226237. (https://doi.org/10.1016/j.tem.2016.02.005)

    • Search Google Scholar
    • Export Citation
  • 10

    Giustina A, Barkan A, Beckers A, Biermasz N, Biller BMK, Boguszewski C, Bolanowski M, Bonert V, Bronstein MD & Casanueva FF A consensus on the diagnosis and treatment of acromegaly comorbidities: an update. Journal of Clinical Endocrinology and Metabolism 2020 105 dgz096. (https://doi.org/10.1210/clinem/dgz096)

    • Search Google Scholar
    • Export Citation
  • 11

    Katznelson L, Laws Jr ER, Melmed S, Molitch ME, Murad MH, Utz A, Wass JAEndocrine Society. Acromegaly: an endocrine society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism 2014 99 39333951. (https://doi.org/10.1210/jc.2014-2700)

    • Search Google Scholar
    • Export Citation
  • 12

    Bollerslev J, Heck A & Olarescu NC MANAGEMENT OF ENDOCRINE DISEASE: Individualised management of acromegaly. European Journal of Endocrinology 2019 181 R57R71. (https://doi.org/10.1530/EJE-19-0124)

    • Search Google Scholar
    • Export Citation
  • 13

    Ferrau F, Albani A, Ciresi A, Giordano C & Cannavo S Diabetes secondary to acromegaly: physiopathology, clinical features and effects of treatment. Frontiers in Endocrinology 2018 9 358. (https://doi.org/10.3389/fendo.2018.00358)

    • Search Google Scholar
    • Export Citation
  • 14

    Kinoshita Y, Fujii H, Takeshita A, Taguchi M, Miyakawa M, Oyama K, Yamada S & Takeuchi Y Impaired glucose metabolism in Japanese patients with acromegaly is restored after successful pituitary surgery if pancreatic {beta}-cell function is preserved. European Journal of Endocrinology 2011 164 467473. (https://doi.org/10.1530/EJE-10-1096)

    • Search Google Scholar
    • Export Citation
  • 15

    Moher D, Liberati A, Tetzlaff J, Altman DGPRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology 2009 62 10061012. (https://doi.org/10.1016/j.jclinepi.2009.06.005)

    • Search Google Scholar
    • Export Citation
  • 16

    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J & Moher D The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology 2009 62 e134. (https://doi.org/10.1016/j.jclinepi.2009.06.006)

    • Search Google Scholar
    • Export Citation
  • 17

    Landin K, Petruson B, Jakobsson KE & Bengtsson BA Skeletal muscle sodium and potassium changes after successful surgery in acromegaly: relation to body composition, blood glucose, plasma insulin and blood pressure. Acta Endocrinologica 1993 128 418422. (https://doi.org/10.1530/acta.0.1280418)

    • Search Google Scholar
    • Export Citation
  • 18

    Moller N, Schmitz O, Joorgensen JO, Astrup J, Bak JF, Christensen SE, Alberti KG & Weeke J Basal- and insulin-stimulated substrate metabolism in patients with active acromegaly before and after adenomectomy. Journal of Clinical Endocrinology and Metabolism 1992 74 10121019. (https://doi.org/10.1210/jcem.74.5.1569148)

    • Search Google Scholar
    • Export Citation
  • 19

    Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L & Sterne JA The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011 343 d5928. (https://doi.org/10.1136/bmj.d5928)

    • Search Google Scholar
    • Export Citation
  • 20

    Hozo SP, Djulbegovic B & Hozo I Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology 2005 5 13. (https://doi.org/10.1186/1471-2288-5-13)

    • Search Google Scholar
    • Export Citation
  • 21

    Higgins JP, Thompson SG, Deeks JJ & Altman DG Measuring inconsistency in meta-analyses. BMJ 2003 327 557560. (https://doi.org/10.1136/bmj.327.7414.557)

    • Search Google Scholar
    • Export Citation
  • 22

    Colao A, Auriemma RS, Galdiero M, Cappabianca P, Cavallo LM, Esposito F, Grasso LF, Lombardi G & Pivonello R Impact of somatostatin analogs versus surgery on glucose metabolism in acromegaly: results of a 5-year observational, open, prospective study. Journal of Clinical Endocrinology and Metabolism 2009 94 528537. (https://doi.org/10.1210/jc.2008-1546)

    • Search Google Scholar
    • Export Citation
  • 23

    Helseth R, Carlsen SM, Bollerslev J, Svartberg J, Oksnes M, Skeie S & Fougner SL Preoperative octreotide therapy and surgery in acromegaly: associations between glucose homeostasis and treatment response. Endocrine 2016 51 298307. (https://doi.org/10.1007/s12020-015-0679-6)

    • Search Google Scholar
    • Export Citation
  • 24

    Winhofer Y, Wolf P, Krssak M, Wolfsberger S, Tura A, Pacini G, Gessl A, Raber W, Kukurova IJ & Kautzky-Willer A No evidence of ectopic lipid accumulation in the pathophysiology of the acromegalic cardiomyopathy. Journal of Clinical Endocrinology and Metabolism 2014 99 42994306. (https://doi.org/10.1210/jc.2014-2242)

    • Search Google Scholar
    • Export Citation
  • 25

    Damjanovic SS, Petakov MS, Raicevic S, Micic D, Marinkovic J, Dieguez C, Casanueva FF & Popovic V Serum leptin levels in patients with acromegaly before and after correction of hypersomatotropism by trans-sphenoidal surgery. Journal of Clinical Endocrinology and Metabolism 2000 85 147154. (https://doi.org/10.1210/jcem.85.1.6296)

    • Search Google Scholar
    • Export Citation
  • 26

    Freda PU, Reyes CM, Conwell IM, Sundeen RE & Wardlaw SL Serum ghrelin levels in acromegaly: effects of surgical and long-acting octreotide therapy. Journal of Clinical Endocrinology and Metabolism 2003 88 20372044. (https://doi.org/10.1210/jc.2002-021683)

    • Search Google Scholar
    • Export Citation
  • 27

    Hoybye C, Chandramouli V, Efendic S, Hulting AL, Landau BR, Schumann WC & Wajngot A Contribution of gluconeogenesis and glycogenolysis to hepatic glucose production in acromegaly before and after pituitary microsurgery. Hormone and Metabolic Research 2008 40 498501. (https://doi.org/10.1055/s-2008-1065322)

    • Search Google Scholar
    • Export Citation
  • 28

    Mori K, Iwasaki Y, Kawasaki-Ogita Y, Honjo S, Hamamoto Y, Tatsuoka H, Fujimoto K, Ikeda H, Wada Y & Takahashi Y Improvement of insulin resistance following transsphenoidal surgery in patients with acromegaly: correlation with serum IGF-I levels. Journal of Endocrinological Investigation 2013 36 853859. (https://doi.org/10.3275/8964)

    • Search Google Scholar
    • Export Citation
  • 29

    Reyes-Vidal C, Fernandez JC, Bruce JN, Crisman C, Conwell IM, Kostadinov J, Geer EB, Post KD & Freda PU Prospective study of surgical treatment of acromegaly: effects on ghrelin, weight, adiposity, and markers of CV risk. Journal of Clinical Endocrinology and Metabolism 2014 99 41244132. (https://doi.org/10.1210/jc.2014-2259)

    • Search Google Scholar
    • Export Citation
  • 30

    Reyes-Vidal CM, Mojahed H, Shen W, Jin Z, Arias-Mendoza F, Fernandez JC, Gallagher D, Bruce JN, Post KD & Freda PU Adipose tissue redistribution and ectopic lipid deposition in active acromegaly and effects of surgical treatment. Journal of Clinical Endocrinology and Metabolism 2015 100 29462955. (https://doi.org/10.1210/jc.2015-1917)

    • Search Google Scholar
    • Export Citation
  • 31

    Oscarsson J, Wiklund O, Jakobsson KE, Petruson B & Bengtsson BA Serum lipoproteins in acromegaly before and 6–15 months after transsphenoidal adenomectomy. Clinical Endocrinology 1994 41 603608. (https://doi.org/10.1111/j.1365-2265.1994.tb01825.x)

    • Search Google Scholar
    • Export Citation
  • 32

    Wasada T, Aoki K, Sato A, Katsumori K, Muto K, Tomonaga O, Yokoyama H, Iwasaki N, Babazono T & Takahashi C Assessment of insulin resistance in acromegaly associated with diabetes mellitus before and after transsphenoidal adenomectomy. Endocrine Journal 1997 44 617620. (https://doi.org/10.1507/endocrj.44.617)

    • Search Google Scholar
    • Export Citation
  • 33

    Sakai H, Tsuchiya K, Nakayama C, Iwashima F, Izumiyama H, Doi M, Yoshimoto T, Tsujino M, Yamada S & Hirata Y Improvement of endothelial dysfunction in acromegaly after transsphenoidal surgery. Endocrine Journal 2008 55 853859. (https://doi.org/10.1507/endocrj.k07e-125)

    • Search Google Scholar
    • Export Citation
  • 34

    Sze L, Bernays RL, Zwimpfer C, Wiesli P, Brandle M & Schmid C Excessively high soluble klotho in patients with acromegaly. Journal of Internal Medicine 2012 272 9397. (https://doi.org/10.1111/j.1365-2796.2012.02542.x)

    • Search Google Scholar
    • Export Citation
  • 35

    Wiesli P, Bernays R, Brandle M, Zwimpfer C, Seiler H, Zapf J, A Spinas G & Schmid C Effect of pituitary surgery in patients with acromegaly on adiponectin serum concentrations and alanine aminotransferase activity. Clinica Chimica Acta: International Journal of Clinical Chemistry 2005 352 175181. (https://doi.org/10.1016/j.cccn.2004.09.022)

    • Search Google Scholar
    • Export Citation
  • 36

    Jaffrain-Rea ML, Minniti G, Moroni C, Esposito V, Ferretti E, Santoro A, Infusino T, Tamburrano G, Cantore G & Cassone R Impact of successful transsphenoidal surgery on cardiovascular risk factors in acromegaly. European Journal of Endocrinology 2003 148 193201. (https://doi.org/10.1530/eje.0.1480193)

    • Search Google Scholar
    • Export Citation
  • 37

    Akutsu H, Kreutzer J, Wasmeier G, Ropers D, Rost C, Mohlig M, Wallaschofski H, Buchfelder M & Schofl C Acromegaly per se does not increase the risk for coronary artery disease. European Journal of Endocrinology 2010 162 879886. (https://doi.org/10.1530/EJE-09-0945)

    • Search Google Scholar
    • Export Citation
  • 38

    Battezzati A, Benedini S, Fattorini A, Losa M, Mortini P, Bertoli S, Lanzi R, Testolin G, Biolo G & Luzi L Insulin action on protein metabolism in acromegalic patients. American Journal of Physiology: Endocrinology and Metabolism 2003 284 E823E829. (https://doi.org/10.1152/ajpendo.00020.2002)

    • Search Google Scholar
    • Export Citation
  • 39

    Holdaway IM, Rajasoorya RC & Gamble GD Factors influencing mortality in acromegaly. Journal of Clinical Endocrinology and Metabolism 2004 89 667674. (https://doi.org/10.1210/jc.2003-031199)

    • Search Google Scholar
    • Export Citation
  • 40

    Gonzalez B, Vargas G, de Los Monteros ALE, Mendoza V & Mercado M Persistence of diabetes and hypertension after multimodal treatment of acromegaly. Journal of Clinical Endocrinology and Metabolism 2018 103 23692375. (https://doi.org/10.1210/jc.2018-00325)

    • Search Google Scholar
    • Export Citation
  • 41

    Cozzolino A, Feola T, Simonelli I, Puliani G, Pozza C, Giannetta E, Gianfrilli D, Pasqualetti P, Lenzi A & Isidori AM Somatostatin analogs and glucose metabolism in acromegaly: a meta-analysis of prospective interventional studies. Journal of Clinical Endocrinology and Metabolism 2018 103 2089–2099. (https://doi.org/10.1210/jc.2017-02566)

    • Search Google Scholar
    • Export Citation
  • 42

    Feola T, Cozzolino A, Simonelli I, Sbardella E, Pozza C, Giannetta E, Gianfrilli D, Pasqualetti P, Lenzi A & Isidori AM Pegvisomant improves glucose metabolism in acromegaly: a meta-analysis of prospective interventional studies. Journal of Clinical Endocrinology and Metabolism 2019 104 28922902. (https://doi.org/10.1210/jc.2018-02281)

    • Search Google Scholar
    • Export Citation
  • 43

    Jonas C, Maiter D & Alexopoulou O Evolution of glucose tolerance after treatment of acromegaly: a study in 57 patients. Hormone and Metabolic Research 2016 48 299305. (https://doi.org/10.1055/s-0035-1569277)

    • Search Google Scholar
    • Export Citation
  • 44

    Rochette C, Graillon T, Albarel F, Morange I, Dufour H, Brue T & Castinetti F Increased risk of persistent glucose disorders after control of acromegaly. Journal of the Endocrine Society 2017 1 15311539. (https://doi.org/10.1210/js.2017-00334)

    • Search Google Scholar
    • Export Citation
  • 45

    Fieffe S, Morange I, Petrossians P, Chanson P, Rohmer V, Cortet C, Borson-Chazot F, Brue T, Delemer BFrench Acromegaly Registry. Diabetes in acromegaly, prevalence, risk factors, and evolution: data from the French Acromegaly Registry. European Journal of Endocrinology 2011 164 877884. (https://doi.org/10.1530/EJE-10-1050)

    • Search Google Scholar
    • Export Citation
  • 46

    Alexopoulou O, Bex M, Kamenicky P, Mvoula AB, Chanson P & Maiter D Prevalence and risk factors of impaired glucose tolerance and diabetes mellitus at diagnosis of acromegaly: a study in 148 patients. Pituitary 2014 17 8189. (https://doi.org/10.1007/s11102-013-0471-7)

    • Search Google Scholar
    • Export Citation
  • 47

    Stelmachowska-Banas M, Zielinski G, Zdunowski P, Podgorski J & Zgliczynski W The impact of transsphenoidal surgery on glucose homeostasis and insulin resistance in acromegaly. Neurologia i Neurochirurgia Polska 2011 45 328334. (https://doi.org/10.1016/s0028-3843(1460103-1)

    • Search Google Scholar
    • Export Citation
  • 48

    Lesen E, Granfeldt D, Houchard A, Dinet J, Berthon A, Olsson DS, Bjorholt I & Johannsson G Comorbidities, treatment patterns and cost-of-illness of acromegaly in Sweden: a register-linkage population-based study. European Journal of Endocrinology 2017 176 203212. (https://doi.org/10.1530/EJE-16-0623)

    • Search Google Scholar
    • Export Citation
  • 49

    Biermasz NR, Roelfsema F, Pereira AM & Romijn JA Cost-effectiveness of lanreotide Autogel in treatment algorithms of acromegaly. Expert Review of Pharmacoeconomics and Outcomes Research 2009 9 223234. (https://doi.org/10.1586/erp.09.17)

    • Search Google Scholar
    • Export Citation
  • 50

    Kimmell KT, Weil RJ & Marko NF Multi-modal management of acromegaly: a value perspective. Pituitary 2015 18 658665. (https://doi.org/10.1007/s11102-014-0626-1)

    • Search Google Scholar
    • Export Citation
  • 51

    Leonart LP, Borba HHL, Ferreira VL, Riveros BS & Pontarolo R Cost-effectiveness of acromegaly treatments: a systematic review. Pituitary 2018 21 642652. (https://doi.org/10.1007/s11102-018-0908-0)

    • Search Google Scholar
    • Export Citation
  • 52

    Marko NF, LaSota E, Hamrahian AH & Weil RJ Comparative effectiveness review of treatment options for pituitary microadenomas in acromegaly. Journal of Neurosurgery 2012 117 522538. (https://doi.org/10.3171/2012.4.JNS11739)

    • Search Google Scholar
    • Export Citation
  • 53

    Kasuki L, Wildemberg LE & Gadelha MR MANAGEMENT OF ENDOCRINE DISEASE: Personalized medicine in the treatment of acromegaly. European Journal of Endocrinology 2018 178 R89R100. (https://doi.org/10.1530/EJE-17-1006)

    • Search Google Scholar
    • Export Citation