In adults with obesity, copeptin is linked with BMI but is not associated with long-term exposure to cortisol and cortisone

in European Journal of Endocrinology
View More View Less
  • 1 Obesity Centre CGG, Department of Internal Medicine
  • 2 Division of Endocrinology, Department of Internal Medicine
  • 3 Division of Pediatric Endocrinology, Department of Pediatrics
  • 4 Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
  • 5 Department of Clinical Sciences, Lund University, Malmö, Sweden
  • 6 Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden

Correspondence should be addressed to E F C van Rossum; Email: e.vanrossum@erasmusmc.nl
Restricted access

Context

Obesity and cardiometabolic diseases are associated with higher long-term glucocorticoid levels, measured as scalp hair cortisol (HairF) and cortisone (HairE). Cardiometabolic diseases have also been associated with copeptin, a stable surrogate marker for the arginine-vasopressin (AVP) system. Since AVP is, together with corticotropin-releasing hormone (CRH) an important regulator of the hypothalamic-pituitary adrenal axis (HPA axis), we hypothesize that AVP contributes to chronic hypercortisolism in obesity.

Objective

To investigate whether copeptin levels are associated with Higher HairF and HairE levels in obesity.

Design

A cross-sectional study in 51 adults with obesity (BMI ≥30 kg/m2).

Methods

Associations and interactions between copeptin, HairF, HairE, and cardiometabolic parameters were cross-sectionally analyzed.

Results

Copeptin was strongly associated with BMI and waist circumference (WC) (rho = 0.364 and 0.530, P = 0.008 and <0.001, respectively), also after correction for confounders. There were no associations between copeptin and HairF or HairE on a continuous or dichotomized scale, despite correction for confounders.

Conclusion

In patients with obesity, AVP seems not a major contributor to the frequently observed high cortisol levels. Other factors which stimulate the HPA axis or affect cortisol synthesis or breakdown may be more important than the influence of AVP on long-term glucocorticoid levels in obesity.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 234 234 218
Full Text Views 29 29 29
PDF Downloads 24 24 24
  • 1

    GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH & Moradi-Lakeh M Health effects of overweight and obesity in 195 countries over 25 years. New England Journal of Medicine 2017 377 1327. (https://doi.org/10.1056/NEJMoa1614362)

    • Search Google Scholar
    • Export Citation
  • 2

    van der Valk ES, Savas M & van Rossum EFC Stress and obesity: are there more susceptible individuals? Current Obesity Reports 2018 7 193203. (https://doi.org/10.1007/s13679-018-0306-y)

    • Search Google Scholar
    • Export Citation
  • 3

    Incollingo Rodriguez AC, Epel ES, White ML, Standen EC, Seckl JR & Tomiyama AJ Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: a systematic review. Psychoneuroendocrinology 2015 62 301318. (https://doi.org/10.1016/j.psyneuen.2015.08.014)

    • Search Google Scholar
    • Export Citation
  • 4

    Stalder T, Steudte-Schmiedgen S, Alexander N, Klucken T, Vater A, Wichmann S, Kirschbaum C & Miller R Stress-related and basic determinants of hair cortisol in humans: a meta-analysis. Psychoneuroendocrinology 2017 77 261274. (https://doi.org/10.1016/j.psyneuen.2016.12.017)

    • Search Google Scholar
    • Export Citation
  • 5

    Jackson SE, Kirschbaum C & Steptoe A Hair cortisol and adiposity in a population-based sample of 2,527 men and women aged 54 to 87 years. Obesity 2017 25 539544. (https://doi.org/10.1002/oby.21733)

    • Search Google Scholar
    • Export Citation
  • 6

    Stalder T, Kirschbaum C, Alexander N, Bornstein SR, Gao W, Miller R, Stark S, Bosch JA & Fischer JE Cortisol in hair and the metabolic syndrome. Journal of Clinical Endocrinology and Metabolism 2013 98 25732580. (https://doi.org/10.1210/jc.2013-1056)

    • Search Google Scholar
    • Export Citation
  • 7

    Manenschijn L, Schaap L, Van Schoor NM, Van Der Pas S, Peeters GMEE, Lips P, Koper JW & Van Rossum EFC High long-term cortisol levels, measured in scalp hair, are associated with a history of cardiovascular disease. Journal of Clinical Endocrinology and Metabolism 2013 98 20782083. (https://doi.org/10.1210/jc.2012-3663)

    • Search Google Scholar
    • Export Citation
  • 8

    Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H & Tanoue A Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiological Reviews 2012 92 18131864. (https://doi.org/10.1152/physrev.00035.2011)

    • Search Google Scholar
    • Export Citation
  • 9

    Aguilera G, Subburaju S, Young S & Chen J The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Progress in Brain Research 2008 170 2939. (https://doi.org/10.1016/S0079-6123(0800403-2)

    • Search Google Scholar
    • Export Citation
  • 10

    Schinke C, Hesse S, Stoppe M, Meyer K, Schmidt E, Orthgiess J, Bechmann L, Bresch A, Rullmann M & Luthardt J Post-dexamethasone serum copeptin corresponds to HPA axis responsiveness in human obesity. Psychoneuroendocrinology 2017 78 3947. (https://doi.org/10.1016/j.psyneuen.2017.01.004)

    • Search Google Scholar
    • Export Citation
  • 11

    Volpi S, Rabadan-Diehl C & Aguilera G Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress 2004 7 7583. (https://doi.org/10.1080/10253890410001733535)

    • Search Google Scholar
    • Export Citation
  • 12

    Antoni FA Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Frontiers in Neuroendocrinology 1993 14 76122. (https://doi.org/10.1006/frne.1993.1004)

    • Search Google Scholar
    • Export Citation
  • 13

    Sivukhina EV & Jirikowski GF Magnocellular hypothalamic system and its interaction with the hypothalamo-pituitary-adrenal axis. Steroids 2016 111 2128. (https://doi.org/10.1016/j.steroids.2016.01.008)

    • Search Google Scholar
    • Export Citation
  • 14

    Morgenthaler NG, Struck J, Alonso C & Bergmann A Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clinical Chemistry 2006 52 112119. (https://doi.org/10.1373/clinchem.2005.060038)

    • Search Google Scholar
    • Export Citation
  • 15

    Morgenthaler NG, Struck J, Jochberger S & Dunser MW Copeptin: clinical use of a new biomarker. Trends in Endocrinology and Metabolism 2008 19 4349. (https://doi.org/10.1016/j.tem.2007.11.001)

    • Search Google Scholar
    • Export Citation
  • 16

    Roussel R, Fezeu L, Marre M, Velho G, Fumeron F, Jungers P, Lantieri O, Balkau B, Bouby N & Bankir L Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. Journal of Clinical Endocrinology and Metabolism 2014 99 46564663. (https://doi.org/10.1210/jc.2014-2295)

    • Search Google Scholar
    • Export Citation
  • 17

    Rothermel J, Kulle A, Holterhus PM, Toschke C, Lass N & Reinehr T Copeptin in obese children and adolescents: relationships to body mass index, cortisol and gender. Clinical Endocrinology 2016 85 868873. (https://doi.org/10.1111/cen.13235)

    • Search Google Scholar
    • Export Citation
  • 18

    Enhorning S, Wang TJ, Nilsson PM, Almgren P, Hedblad B, Berglund G, Struck J, Morgenthaler NG, Bergmann A & Lindholm E Plasma copeptin and the risk of diabetes mellitus. Circulation 2010 121 21022108. (https://doi.org/10.1161/CIRCULATIONAHA.109.909663)

    • Search Google Scholar
    • Export Citation
  • 19

    Abbasi A, Corpeleijn E, Meijer E, Postmus D, Gansevoort RT, Gans RO, Struck J, Hillege HL, Stolk RP & Navis G Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 2012 55 19631970. (https://doi.org/10.1007/s00125-012-2545-x)

    • Search Google Scholar
    • Export Citation
  • 20

    El Boustany R, Tasevska I, Meijer E, Kieneker LM, Enhorning S, Lefevre G, Mohammedi K, Marre M, Fumeron F & Balkau B Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight 2018 3. (https://doi.org/10.1172/jci.insight.121479)

    • Search Google Scholar
    • Export Citation
  • 21

    Enhorning S, Hedblad B, Nilsson PM, Engstrom G & Melander O Copeptin is an independent predictor of diabetic heart disease and death. American Heart Journal 2015 169 549.e1556.e1. (https://doi.org/10.1016/j.ahj.2014.11.020)

    • Search Google Scholar
    • Export Citation
  • 22

    Riphagen IJ, Boertien WE, Alkhalaf A, Kleefstra N, Gansevoort RT, Groenier KH, van Hateren KJ, Struck J, Navis G & Bilo HJ Copeptin, a surrogate marker for arginine vasopressin, is associated with cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-31). Diabetes Care 2013 36 32013207. (https://doi.org/10.2337/dc12-2165)

    • Search Google Scholar
    • Export Citation
  • 23

    Tasevska I, Enhorning S, Persson M, Nilsson PM & Melander O Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart 2016 102 127132. (https://doi.org/10.1136/heartjnl-2015-308183)

    • Search Google Scholar
    • Export Citation
  • 24

    Barchetta I, Enhorning S, Cimini FA, Capoccia D, Chiappetta C, Di Cristofano C, Silecchia G, Leonetti F, Melander O & Cavallo MG Elevated plasma copeptin levels identify the presence and severity of non-alcoholic fatty liver disease in obesity. BMC Medicine 2019 17 85. (https://doi.org/10.1186/s12916-019-1319-4)

    • Search Google Scholar
    • Export Citation
  • 25

    Melander O Vasopressin, from regulator to disease predictor for diabetes and cardiometabolic risk. Annals of Nutrition and Metabolism 2016 68 (Supplement 2) 2428. (https://doi.org/10.1159/000446201)

    • Search Google Scholar
    • Export Citation
  • 26

    Wester VL, Staufenbiel SM, Veldhorst MAB, Visser JA, Manenschijn L, Koper JW, Klessens-Godfroy FJM, Van Den Akker ELT & Van Rossum EFC Long-term cortisol levels measured in scalp hair of obese patients. Obesity 2014 22 19561958. (https://doi.org/10.1002/oby.20795)

    • Search Google Scholar
    • Export Citation
  • 27

    Muckelbauer R, Sarganas G, Gruneis A & Muller-Nordhorn J Association between water consumption and body weight outcomes: a systematic review. American Journal of Clinical Nutrition 2013 98 282299. (https://doi.org/10.3945/ajcn.112.055061)

    • Search Google Scholar
    • Export Citation
  • 28

    Lemetais G, Melander O, Vecchio M, Bottin JH, Enhorning S & Perrier ET Effect of increased water intake on plasma copeptin in healthy adults. European Journal of Nutrition 2018 57 18831890. (https://doi.org/10.1007/s00394-017-1471-6)

    • Search Google Scholar
    • Export Citation
  • 29

    Noppe G, de Rijke YB, Dorst K, van den Akker EL & van Rossum EF LC‐MS/MS‐based method for long‐term steroid profiling in human scalp hair. Clinical Endocrinology 2015 83 162166. (https://doi.org/10.1111/cen.12781)

    • Search Google Scholar
    • Export Citation
  • 30

    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM & Smith SC Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009 120 16401645. (https://doi.org/10.1161/CIRCULATIONAHA.109.192644)

    • Search Google Scholar
    • Export Citation
  • 31

    Enhorning S, Brunkwall L, Tasevska I, Ericson U, Persson Tholin J, Persson M, Lemetais G, Vanhaecke T, Dolci A & Perrier ET Water supplementation reduces copeptin and plasma glucose in adults With high copeptin: the H2O Metabolism Pilot Study. Journal of Clinical Endocrinology and Metabolism 2019 104 19171925. (https://doi.org/10.1210/jc.2018-02195] H2O.

    • Search Google Scholar
    • Export Citation
  • 32

    Wester VL, Noppe G, Savas M, van den Akker ELT, de Rijke YB & van Rossum EFC Hair analysis reveals subtle HPA axis suppression associated with use of local corticosteroids: the Lifelines cohort study. Psychoneuroendocrinology 2017 80 16. (https://doi.org/10.1016/j.psyneuen.2017.02.024)

    • Search Google Scholar
    • Export Citation
  • 33

    Savas M, Wester VL, de Rijke YB, Rubinstein G, Zopp S, Dorst K, van den Berg SAA, Beuschlein F, Feelders RA & Reincke M Hair glucocorticoids as biomarker for endogenous Cushing’s syndrome: validation in two independent cohorts. Neuroendocrinology 2019 109 171178. (https://doi.org/10.1159/000498886)

    • Search Google Scholar
    • Export Citation
  • 34

    Enhorning S, Bankir L, Bouby N, Struck J, Hedblad B, Persson M, Morgenthaler NG, Nilsson PM & Melander O Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmo Diet and Cancer Study cardiovascular cohort. International Journal of Obesity 2013 37 598603. (https://doi.org/10.1038/ijo.2012.88)

    • Search Google Scholar
    • Export Citation
  • 35

    Stimson RH & Walker BR The role and regulation of 11beta-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Hormone Molecular Biology and Clinical Investigation 2013 15 3748. (https://doi.org/10.1515/hmbci-2013-0015)

    • Search Google Scholar
    • Export Citation
  • 36

    Aguilera G Regulation of pituitary ACTH secretion during chronic stress. Frontiers in Neuroendocrinology 1994 15 321350. (https://doi.org/10.1006/frne.1994.1013)

    • Search Google Scholar
    • Export Citation
  • 37

    Hensen J, Hader O, Bahr V & Oelkers W Effects of incremental infusions of arginine vasopressin on adrenocorticotropin and cortisol secretion in man. Journal of Clinical Endocrinology and Metabolism 1988 66 668671. (https://doi.org/10.1210/jcem-66-4-668)

    • Search Google Scholar
    • Export Citation
  • 38

    Horiba N, Suda T, Aiba M, Naruse M, Nomura K, Imamura M & Demura H Lysine vasopressin stimulation of cortisol secretion in patients with adrenocorticotropin-independent macronodular adrenal hyperplasia. Journal of Clinical Endocrinology and Metabolism 1995 80 23362341. (https://doi.org/10.1210/jcem.80.8.7629226)

    • Search Google Scholar
    • Export Citation