Pediatric reference values of TSH should be personalized according to BMI and ethnicity

in European Journal of Endocrinology
View More View Less
  • 1 The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
  • 2 Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
  • 3 Deptartment of Research and Information, Chief Physician Office, Clalit Health Services, Tel-Aviv, Israel
  • 4 Central Laboratory, Clalit Health Services, Kiriat-Atidim, Israel
  • 5 Department of Epidemiology and Preventive Medicine, Tel Aviv University, Tel-Aviv, Israel
  • 6 Medicine Wing, Community Division, Clalit Health Services, Tel-Aviv, Israel

Correspondence should be addressed to J Meyerovitch; Email: josephm1@outlook.com
Restricted access

Objective:

The need for personalization of the reference values of thyroid function tests has been previously suggested. We aimed at determining TSH reference values in a large cohort of children according to age, sex, BMI, and ethnicity.

Design:

A population-based cohort study.

Methods:

The study cohort included 75 549 healthy children aged 5–18 years. Data analyzed included age, gender, TSH, FT4 levels, BMI and ethnicity. Multivariate logistic regression analysis examined the associations between the study parameters.

Results:

TSH in the Jewish population is lower than in the non-Jewish population (median: 2.1 IU/L (IQR: 1.5) vs 2.2 IU/L (IQR: 1.5), P < 0.0001). TSH is significantly affected by BMI for children defined as underweight, normal weight, overweight or obese, levels increased as weight diverged from the normal range (median levels: 2.1 IU/L (IQR: 1.4), 2.0 IU/L (IQR: 1.3), 2.1 IU/L (IQR: 1.4), 2.4 (IQR: 1.5), respectively, P < 0.001). The 2.5 percentile is affected by gender and BMI (P < 0.02 and P < 0.001, respectively), while the 97.5 percentile is affected by ethnic origin and BMI (P < 0.001 for both). New TSH reference intervals (RI) adjusted according to BMI and ethnicity are suggested. Comparison of the old and new RI demonstrate the significance of RI personalization: 25.1% of the children with TSH levels above the old RI are within the new RI, while 2.3% of the children who were in the old RI are below the new RI.

Conclusions:

TSH reference values in children are affected by BMI and ethnicity. Reference values should be individualized accordingly to improve future clinical decision-making and treatment.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 793 793 349
Full Text Views 73 73 42
PDF Downloads 53 53 29
  • 1

    Lazar L, Frumkin RB, Battat E, Lebenthal Y, Phillip M, Meyerovitch J. Natural history of thyroid function tests over 5 years in a large pediatric cohort. Journal of Clinical Endocrinology and Metabolism 2009 94 16781682. (https://doi.org/10.1210/jc.2008-2615)

    • Search Google Scholar
    • Export Citation
  • 2

    Rapa A, Monzani A, Moia S, Vivenza D, Bellone S, Petri A, Teofoli F, Cassio A, Cesaretti G & Corrias A Subclinical hypothyroidism in children and adolescents: a wide range of clinical, biochemical, and genetic factors involved. Journal of Clinical Endocrinology and Metabolism 2009 94 24142420. (https://doi.org/10.1210/jc.2009-0375)

    • Search Google Scholar
    • Export Citation
  • 3

    Surks MI, Boucai L. Age- and race-based serum thyrotropin reference limits. Journal of Clinical Endocrinology and Metabolism 2010 95 496502. (https://doi.org/10.1210/jc.2009-1845)

    • Search Google Scholar
    • Export Citation
  • 4

    Kratzsch J, Schubert G, Pulzer F, Pfaeffle R, Koerner A, Dietz A, Rauh M, Kiess W, Thiery J. Reference intervals for TSH and thyroid hormones are mainly affected by age, body mass index and number of blood leucocytes, but hardly by gender and thyroid autoantibodies during the first decades of life. Clinical Biochemistry 2008 41 10911098. (https://doi.org/10.1016/j.clinbiochem.2008.04.007)

    • Search Google Scholar
    • Export Citation
  • 5

    Meyerovitch J, Antebi F, Greenberg-Dotan S, Bar-Tal O, Hochberg Z. Hyperthyrotropinaemia in untreated subjects with Down’s syndrome aged 6 months to 64 years: a comparative analysis. Archives of Disease in Childhood 2012 97 595598. (https://doi.org/10.1136/archdischild-2011-300806)

    • Search Google Scholar
    • Export Citation
  • 6

    Tiller D, Ittermann T, Greiser KH, Meisinger C, Agger C, Hofman A, Thuesen B, Linneberg A, Peeters R & Franco O Association of serum thyrotropin with anthropometric markers of obesity in the general population. Thyroid 2016 26 12051214. (https://doi.org/10.1089/thy.2015.0410)

    • Search Google Scholar
    • Export Citation
  • 7

    Boucai L, Hollowell JG, Surks MI. An approach for development of age-, gender-, and ethnicity-specific thyrotropin reference limits. Thyroid 2011 21 511. (https://doi.org/10.1089/thy.2010.0092)

    • Search Google Scholar
    • Export Citation
  • 8

    Önsesveren I, Barjaktarovic M, Chaker L, de Rijke YB, Jaddoe VWV, van Santen HM, Visser TJ, Peeters RP, Korevaar TIM. Childhood thyroid function reference ranges and determinants: a literature overview and a prospective cohort study. Thyroid 2017 27 13601369. (https://doi.org/10.1089/thy.2017.0262)

    • Search Google Scholar
    • Export Citation
  • 9

    Schushan-Eisen I, Lazar L, Amitai N, Meyerovitch J. Thyroid functions in healthy infants during the first year of life. Journal of Pediatrics 2016 170 120.e1125.e1. (https://doi.org/10.1016/j.jpeds.2015.10.012)

    • Search Google Scholar
    • Export Citation
  • 10

    Oren A, Wang MK, Brnjac L, Mahmud FH, Palmert MR. Mild neonatal hyperthyrotrophinaemia: 10-year experience suggests the condition is increasingly common but often transient. Clinical Endocrinology 2013 79 832837. (https://doi.org/10.1111/cen.12228)

    • Search Google Scholar
    • Export Citation
  • 11

    Bailey D, Colantonio D, Kyriakopoulou L, Cohen AH, Chan MK, Armbruster D, Adeli K. Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clinical Chemistry 2013 59 13931405. (https://doi.org/10.1373/clinchem.2013.204222)

    • Search Google Scholar
    • Export Citation
  • 12

    Kaloumenou I, Duntas LH, Alevizaki M, Mantzou E, Chiotis D, Mengreli C, Papassotiriou I, Mastorakos G, Dacou-Voutetakis C. Gender, age, puberty, and BMI related changes of TSH and thyroid hormones in school children living in a long-standing iodine replete area. Hormone and Metabolic Research 2010 42 285289. (https://doi.org/10.1055/s-0029-1246184)

    • Search Google Scholar
    • Export Citation
  • 13

    Djemli A, Van Vliet G, Belgoudi J, Lambert M, Delvin EE. Reference intervals for free thyroxine, total triiodothyronine, thyrotropin and thyroglobulin for Quebec newborns, children and teenagers. Clinical Biochemistry 2004 37 328330. (https://doi.org/10.1016/j.clinbiochem.2003.12.006)

    • Search Google Scholar
    • Export Citation
  • 14

    World Health Organization. Growth reference 5–19 years. (available at: www.who.int/growthref/who2007_bmi_for_age/en/).

  • 15

    Reix N, Massart C, d'Herbomez M, Gasser F, Heurtault B, Agin A. Thyroid-stimulating hormone and free thyroxine on the Advia Centaur immunoassay system: a multicenter assessment of analytical performance. Clinical Biochemistry 2013 46 13051308. (https://doi.org/10.1016/j.clinbiochem.2013.04.015)

    • Search Google Scholar
    • Export Citation
  • 16

    Baloch Z, Carayon P, Conte-Devolx B, Demers LM, Feldt-Rasmussen U, Henry JF, LiVosli VA, Niccoli-Sire P, John R & Ruf J Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid 2003 13 3126. (https://doi.org/10.1089/105072503321086962)

    • Search Google Scholar
    • Export Citation
  • 17

    Israel central bureau of statistics. (available at: www.cbs.gov.il/reader/?MIval=cw:usr_view:Folder&ID=141).

  • 18

    Boucai L, Surks MI. Reference limits of serum TSH and free T4 are significantly influenced by race and age in an urban outpatient medical practice. Clinical Endocrinology 2009 70 788793. (https://doi.org/10.1111/j.1365-2265.2008.03390.x)

    • Search Google Scholar
    • Export Citation
  • 19

    Arnaud-Lopez L, Usala G, Ceresini G, Mitchell BD, Pilia MG, Piras MG, Sestu N, Maschio A, Busonero F & Albai G Phosphodiesterase 8B gene variants are associated with serum TSH levels and thyroid function. American Journal of Human Genetics 2008 82 12701280. (https://doi.org/10.1016/j.ajhg.2008.04.019)

    • Search Google Scholar
    • Export Citation
  • 20

    Rawal R, Teumer A, Völzke H, Wallaschofski H, Ittermann T, Åsvold BO, Bjøro T, Greiser KH, Tiller D & Werdan K Meta-analysis of two genome-wide association studies identifies four genetic loci associated with thyroid function. Human Molecular Genetics 2012 21 32753282. (https://doi.org/10.1093/hmg/dds136)

    • Search Google Scholar
    • Export Citation
  • 21

    Samollow PB, Perez G, Kammerer CM, Finegold D, Zwartjes PW, Havill LM, Comuzzie AG, Mahaney MC, Göring HH & Blangero J Genetic and environmental influences on thyroid hormone variation in Mexican Americans. Journal of Clinical Endocrinology and Metabolism 2004 89 32763284. (https://doi.org/10.1210/jc.2003-031706)

    • Search Google Scholar
    • Export Citation
  • 22

    Hansen PS, Brix TH, Sørensen TI, Kyvik KO, Hegedüs L. Major genetic influence on the regulation of the pituitary-thyroid axis: a study of healthy Danish twins. Journal of Clinical Endocrinology and Metabolism 2004 89 11811187. (https://doi.org/10.1210/jc.2003-031641)

    • Search Google Scholar
    • Export Citation
  • 23

    Estrada JM, Soldin D, Buckey TM, Burman KD, Soldin OP. Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid 2014 24 411423. (https://doi.org/10.1089/thy.2013.0119)

    • Search Google Scholar
    • Export Citation
  • 24

    Zlotogora J. Genetics and genomic medicine in Israel. Molecular Genetics and Genomic Medicine 2014 2 8594. (https://doi.org/10.1002/mgg3.73)

    • Search Google Scholar
    • Export Citation
  • 25

    Rinawi F, Assa A, Bashir H, Peleg S, Shamir R. Clinical and phenotypic differences in inflammatory bowel disease Among Arab and Jewish children in Israel. Digestive Diseases and Sciences 2017 62 20952101. (https://doi.org/10.1007/s10620-017-4623-x)

    • Search Google Scholar
    • Export Citation
  • 26

    Zlotogora J, Barges S, Bisharat B, Shalev SA. Genetic disorders among Palestinian Arabs. 4: Genetic clinics in the community. American Journal of Medical Genetics 2006 140 16441646.

    • Search Google Scholar
    • Export Citation
  • 27

    Ostrer H, Skorecki K. The population genetics of the Jewish people. Human Genetics 2013 132 119127. (https://doi.org/10.1007/s00439-012-1235-6)

    • Search Google Scholar
    • Export Citation
  • 28

    Shalev SA, Zlotogora J, Shalata A, Levy-Lahad E. Medical genetics in Israel’s diverse population. Lancet 2017 389 24532455. (https://doi.org/10.1016/S0140-6736(17)30875-9)

    • Search Google Scholar
    • Export Citation
  • 29

    Reinehr T, de Sousa G, Andler W. Hyperthyrotropinemia in obese children is reversible after weight loss and is not related to lipids. Journal of Clinical Endocrinology and Metabolism 2006 91 30883091. (https://doi.org/10.1210/jc.2006-0095)

    • Search Google Scholar
    • Export Citation
  • 30

    Stichel H, l’Allemand D, Grüters A. Thyroid function and obesity in children and adolescents. Hormone Research 2000 54 1419. (https://doi.org/10.1159/000063431)

    • Search Google Scholar
    • Export Citation
  • 31

    Ghizzoni L, Mastorakos G, Ziveri M, Furlini M, Solazzi A, Vottero A, Bernasconi S. Interactions of leptin and thyrotropin 24-hour secretory profiles in short normal children. Journal of Clinical Endocrinology and Metabolism 2001 86 20652072. (https://doi.org/10.1210/jcem.86.5.7452)

    • Search Google Scholar
    • Export Citation
  • 32

    Taylor PN, Richmond R, Davies N, Sayers A, Stevenson K, Woltersdorf W, Taylor A, Groom A, Northstone K & Ring S Paradoxical relationship between body mass index and thyroid hormone levels: a study using Mendelian randomization. Journal of Clinical Endocrinology and Metabolism 2016 101 730738. (https://doi.org/10.1210/jc.2015-3505)

    • Search Google Scholar
    • Export Citation
  • 33

    Zurakowski D, Di Canzio J, Majzoub JA. Pediatric reference intervals for serum thyroxine, triiodothyronine, thyrotropin, and free thyroxine. Clinical Chemistry 1999 45 10871091. (https://doi.org/10.1093/clinchem/45.7.1087)

    • Search Google Scholar
    • Export Citation
  • 34

    Chaler EA, Fiorenzano R, Chilelli C, Llinares V, Areny G, Herzovich V, Maceiras M, Lazzati JM, Mendioroz M & Rivarola MA Age-specific thyroid hormone and thyrotropin reference intervals for a pediatric and adolescent population. Clinical Chemistry and Laboratory Medicine 2012 50 885890. (https://doi.org/10.1515/cclm-2011-0495)

    • Search Google Scholar
    • Export Citation
  • 35

    Barjaktarovic M, Korevaar TIM, Gaillard R, de Rijke YB, Visser TJ, Jaddoe VWV, Peeters RP. Childhood thyroid function, body composition and cardiovascular function. European Journal of Endocrinology 2017 177 319327. (https://doi.org/10.1530/EJE-17-0369)

    • Search Google Scholar
    • Export Citation
  • 36

    Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- and- gender specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the thyroid epidemiology, audit and research study (TEARS). Journal of Clinical Endocrinology and Metabolism 2013 98 11471153. (https://doi.org/10.1210/jc.2012-3191)

    • Search Google Scholar
    • Export Citation
  • 37

    Kahapola-Arachchige KM, Hadlow N, Wardrop R, Lim EM, Walsh JP. Age-specific TSH reference ranges have minimal impact on the diagnosis of thyroid dysfunction. Clinical Endocrinology 2012 77 773779. (https://doi.org/10.1111/j.1365-2265.2012.04463.x)

    • Search Google Scholar
    • Export Citation
  • 38

    Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, Braverman LE. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). Journal of Clinical Endocrinology and Metabolism 2002 87 489499.

    • Search Google Scholar
    • Export Citation
  • 39

    Meyerovitch J, Rotman-Pikielny P, Sherf M, Battat E, Levy Y, Surks MI. Serum thyrotropin measurements in the community: five-year follow-up in a large network of primary care physicians. Archives of Internal Medicine 2007 167 15331538. (https://doi.org/10.1001/archinte.167.14.1533)

    • Search Google Scholar
    • Export Citation