Pro-neurotensin depends on renal function and is related to all-cause mortality in chronic kidney disease

in European Journal of Endocrinology

Correspondence should be addressed to T Ebert; Email: thomas.ebert@ki.se
Restricted access

Background:

Patients with chronic kidney disease (CKD) have a high risk of premature cardiovascular diseases (CVD) and show increased mortality. Pro-neurotensin (Pro-NT) was associated with metabolic diseases and predicted incident CVD and mortality. However, Pro-NT regulation in CKD and its potential role linking CKD and mortality have not been investigated, so far.

Methods:

In a central lab, circulating Pro-NT was quantified in three independent cohorts comprising 4715 participants (cohort 1: patients with CKD; cohort 2: general population study; and cohort 3: non-diabetic population study). Urinary Pro-NT was assessed in part of the patients from cohort 1. In a 4th independent cohort, serum Pro-NT was further related to mortality in patients with advanced CKD. Tissue-specific Nts expression was further investigated in two mouse models of diabetic CKD and compared to non-diabetic control mice.

Results:

Pro-NT significantly increased with deteriorating renal function (P < 0.001). In meta-analysis of cohorts 1–3, Pro-NT was significantly and independently associated with estimated glomerular filtration rate (P ≤ 0.002). Patients in the middle/high Pro-NT tertiles at baseline had a higher all-cause mortality compared to the low Pro-NT tertile (Hazard ratio: 2.11, P = 0.046). Mice with severe diabetic CKD did not show increased Nts mRNA expression in different tissues compared to control animals.

Conclusions:

Circulating Pro-NT is associated with impaired renal function in independent cohorts comprising 4715 subjects and is related to all-cause mortality in patients with end-stage kidney disease. Our human and rodent data are in accordance with the hypotheses that Pro-NT is eliminated by the kidneys and could potentially contribute to increased mortality observed in patients with CKD.

Supplementary Materials

    • Supplementary Methods Animal experiments
    • Supplementary Figure 1 Urinary Pro-NT regulation in a subcohort of the cohort 1 (patients with chronic kidney disease)

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 92 92 92
Full Text Views 22 22 22
PDF Downloads 14 14 14
  • 1

    BlüherM. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology 2019 15 288298. (https://doi.org/10.1038/s41574-019-0176-8)

    • Search Google Scholar
    • Export Citation
  • 2

    LozanoRNaghaviMForemanKLimSShibuyaKAboyansVAbrahamJAdairTAggarwalRAhnSY et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012 380 20952128. (https://doi.org/10.1016/S0140-6736(12)61728-0)

    • Search Google Scholar
    • Export Citation
  • 3

    BikbovBPurcellCALeveyASSmithMAbdoliAAbebeMAdebayoOMAfaridehMAgarwalSKAgudelo-BoteroM et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020 395 709733. (https://doi.org/10.1016/S0140-6736(20)30045-3)

    • Search Google Scholar
    • Export Citation
  • 4

    KoomanJPDekkerMJUsvyatL AKotankoPvan der SandeFMSchalkwijkCGShielsPGStenvinkelP. Inflammation and premature ageing in chronic kidney disease. American Journal of Physiology Renal Physiology 2017 313 F938F950. (https://doi.org/10.1152/ajprenal.00256.2017)

    • Search Google Scholar
    • Export Citation
  • 5

    EbertTGebhardtCScholzMWohlandTSchleinitzDFasshauerMBlüherMStumvollMKovacsPTönjesA. Relationship between 12 adipocytokines and distinct components of the metabolic syndrome. Journal of Clinical Endocrinology and Metabolism 2018 103 10151023. (https://doi.org/10.1210/jc.2017-02085)

    • Search Google Scholar
    • Export Citation
  • 6

    EbertTHopfLMWurstUBachmannAKralischSLössnerUPlatzMKratzschJStolzenburgJUDietelA et al. Circulating adipocyte fatty acid binding protein is increased in chronic and acute renal dysfunction. Nutrition Metabolism and Cardiovascular Diseases 2014 24 10271034. (https://doi.org/10.1016/j.numecd.2014.03.006)

    • Search Google Scholar
    • Export Citation
  • 7

    FuruhashiMTuncmanGGörgünCZMakowskiLAtsumiGVaillancourtEKonoKBabaevVRFazioSLintonMF et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 2007 447 959965. (https://doi.org/10.1038/nature05844)

    • Search Google Scholar
    • Export Citation
  • 8

    vonEynatten MBreitlingLPRoosMBaumannMRothenbacherDBrennerH. Circulating adipocyte fatty acid-binding protein levels and cardiovascular morbidity and mortality in patients with coronary heart disease a 10-year prospective study. Arteriosclerosis Thrombosis and Vascular Biology 2012 32 23272335. (https://doi.org/10.1161/ATVBAHA.112.248609)

    • Search Google Scholar
    • Export Citation
  • 9

    PolakJMSullivanSNBloomSRBuchanAMJFacerPBrownMRPearseAGE. Specific localisation of neurotensin to the N cell in human intestine by radioimmunoassay and immunocytochemistry. Nature 1977 270 183184. (https://doi.org/10.1038/270183a0)

    • Search Google Scholar
    • Export Citation
  • 10

    BarchettaICiccarelliGCiminiFACeccarelliVOrho-MelanderMMelanderOCavalloMG. Association between systemic leptin and neurotensin concentration in adult individuals with and without type 2 diabetes mellitus. Journal of Endocrinological Investigation 2018 41 11591163. (https://doi.org/10.1007/s40618-018-0845-9)

    • Search Google Scholar
    • Export Citation
  • 11

    LiJSongJZaytsevaYYLiuYRychahouPJiangKStarrMEKimJTHarrisJWYiannikourisFB et al. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 2016 533 411415. (https://doi.org/10.1038/nature17662)

    • Search Google Scholar
    • Export Citation
  • 12

    BarchettaICiminiFALeonettiFCapocciaDDi CristofanoCSilecchiaGOrho-MelanderMMelanderOCavalloMG. Increased plasma proneurotensin levels identify NAFLD in adults with and without type 2 diabetes. Journal of Clinical Endocrinology and Metabolism 2018 103 22532260. (https://doi.org/10.1210/jc.2017-02751)

    • Search Google Scholar
    • Export Citation
  • 13

    MelanderOMaiselASAlmgrenPManjerJBeltingMHedbladBEngströmGKilgerUNilssonPBergmannA et al. Plasma proneurotensin and incidence of diabetes, cardiovascular disease, breast cancer, and mortality. JAMA 2012 308 1469. (https://doi.org/10.1001/jama.2012.12998)

    • Search Google Scholar
    • Export Citation
  • 14

    TönjesAKralischSHoffmannASchleinitzDKratzschJBlüherMStumvollMKovacsPFasshauerMEbertT. Circulating pro-neurotensin in gestational diabetes mellitus. Nutrition Metabolism and Cardiovascular Diseases 2019 29 2329. (https://doi.org/10.1016/j.numecd.2018.09.011)

    • Search Google Scholar
    • Export Citation
  • 15

    EbertTGebhardtCScholzMSchleinitzDBlüherMStumvollMKovacsPFasshauerMTönjesA. Adipocytokines are not associated with gestational diabetes mellitus but with pregnancy status. Cytokine 2020 131 155088. (https://doi.org/10.1016/j.cyto.2020.155088)

    • Search Google Scholar
    • Export Citation
  • 16

    JanuzziJLLyassALiuYGagginHTrebnickAMaiselASD’AgostinoRBWangTJMassaroJVasanRS. Circulating proneurotensin concentrations and cardiovascular disease events in the community. Arteriosclerosis Thrombosis and Vascular Biology 2016 36 16921697. (https://doi.org/10.1161/ATVBAHA.116.307847)

    • Search Google Scholar
    • Export Citation
  • 17

    de JagerDJGrootendorstDCJagerKJvan DijkPCTomasLMJAnsellDCollartFFinnePHeafJGMeesterJD et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 2009 302 17821789. (https://doi.org/10.1001/jama.2009.1488)

    • Search Google Scholar
    • Export Citation
  • 18

    KralischSHoffmannAKlötingNFrilleAKuhnHNowickiMPaeschkeSBachmannABlüherMZhangM-Z et al. The brown fat-secreted adipokine neuregulin 4 is decreased in human and murine chronic kidney disease. European Journal of Endocrinology 2019 181 151159. (https://doi.org/10.1530/EJE-19-0017)

    • Search Google Scholar
    • Export Citation
  • 19

    EbertTFockeDPetroffDWurstURichterJBachmannALössnerUKralischSKratzschJBeigeJ et al. Serum levels of the myokine irisin in relation to metabolic and renal function. European Journal of Endocrinology 2014 170 501506. (https://doi.org/10.1530/EJE-13-1053)

    • Search Google Scholar
    • Export Citation
  • 20

    HindricksJEbertTBachmannAKralischSLössnerUKratzschJStolzenburgJ-UDietelABeigeJAndersM et al. Serum levels of fibroblast growth factor-21 are increased in chronic and acute renal dysfunction. Clinical Endocrinology 2014 80 918924. (https://doi.org/10.1111/cen.12380)

    • Search Google Scholar
    • Export Citation
  • 21

    RichterJFockeDEbertTKovacsPBachmannALössnerUKralischSKratzschJBeigeJAndersM et al. Serum levels of the adipokine progranulin depend on renal function. Diabetes Care 2013 36 410414. (https://doi.org/10.2337/dc12-0220)

    • Search Google Scholar
    • Export Citation
  • 22

    KralischSHoffmannAKlötingNBachmannAKratzschJStolzenburgJ-UDietelABeigeJAndersMBastI et al. FSTL3 is increased in renal dysfunction. Nephrology Dialysis Transplantation 2017 32 16371644. (https://doi.org/10.1093/ndt/gfw472)

    • Search Google Scholar
    • Export Citation
  • 23

    KDIGO. 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International 2013 3 (Supplement) 1150.

    • Search Google Scholar
    • Export Citation
  • 24

    EbertTKralischSWurstUScholzMStumvollMKovacsPFasshauerMTönjesA. Association of metabolic parameters and rs726344 in FNDC5 with serum irisin concentrations. International Journal of Obesity 2016 40 260265. (https://doi.org/10.1038/ijo.2015.157)

    • Search Google Scholar
    • Export Citation
  • 25

    EbertTKralischSLoessnerUJessnitzerBStumvollMFasshauerMTönjesA. Relationship between serum levels of angiopoietin-related growth factor and metabolic risk factors. Hormone and Metabolic Research 2014 46 685690. (https://doi.org/10.1055/s-0034-1382078)

    • Search Google Scholar
    • Export Citation
  • 26

    LoefflerMEngelCAhnertPAlfermannDArelinKBaberRBeutnerFBinderHBrählerEBurkhardtR et al. The LIFE-adult-study: objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Public Health 2015 15 691. (https://doi.org/10.1186/s12889-015-1983-z)

    • Search Google Scholar
    • Export Citation
  • 27

    StenvinkelPHeimbürgerOPaultreFDiczfalusyUWangTBerglundLJogestrandT. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney International 1999 55 18991911. (https://doi.org/10.1046/j.1523-1755.1999.00422.x)

    • Search Google Scholar
    • Export Citation
  • 28

    SunJAxelssonJMachowskaAHeimbürgerOBárányPLindholmBLindströmKStenvinkelPQureshiAR. Biomarkers of cardiovascular disease and mortality risk in patients with advanced CKD. Clinical Journal of the American Society of Nephrology 2016 11 11631172. (https://doi.org/10.2215/CJN.10441015)

    • Search Google Scholar
    • Export Citation
  • 29

    ErnstAHellmichSBergmannA. Proneurotensin 1–117, a stable neurotensin precursor fragment identified in human circulation. Peptides 2006 27 17871793. (https://doi.org/10.1016/j.peptides.2006.01.021)

    • Search Google Scholar
    • Export Citation
  • 30

    MukaiHSvedbergOLindholmBDaiLHeimbürgerOBaranyPAnderstamBStenvinkelPQureshiAR. Skin autofluorescence, arterial stiffness and Framingham risk score as predictors of clinical outcome in chronic kidney disease patients: a cohort study. Nephrology Dialysis Transplantation 2019 34 442448. (https://doi.org/10.1093/ndt/gfx371)

    • Search Google Scholar
    • Export Citation
  • 31

    FineJPGrayRJ. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 1999 94 496509.

    • Search Google Scholar
    • Export Citation
  • 32

    NoordzijMLeffondréKvan StralenKJZoccaliCDekkerFWJagerKJ. When do we need competing risks methods for survival analysis in nephrology? Nephrology Dialysis Transplantation 2013 28 26702677. (https://doi.org/10.1093/ndt/gft355)

    • Search Google Scholar
    • Export Citation
  • 33

    MissailidisCHällqvistJQureshiARBaranyPHeimbürgerOLindholmBStenvinkelPBergmanP. Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS ONE 2016 11 e0141738.

    • Search Google Scholar
    • Export Citation
  • 34

    HeimbürgerOLönnqvistFDanielssonANordenströmJStenvinkelP. Serum immunoreactive leptin concentration and its relation to the body fat content in chronic renal failure. Journal of the American Society of Nephrology 1997 8 14231430. (https://doi.org/10.1371/journal.pone.0141738)

    • Search Google Scholar
    • Export Citation
  • 35

    ZoccaliCMallamaciFTripepiGBenedettoFACutrupiSParlongoSMalatinoLSBonannoGSeminaraGRapisardaF et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. Journal of the American Society of Nephrology 2002 13 134141.

    • Search Google Scholar
    • Export Citation
  • 36

    AxelssonJWitaspACarreroJJQureshiARSulimanMEHeimbürgerOBárányPLindholmBAlvestrandASchallingM et al. Circulating levels of visfatin/pre-B-cell colony-enhancing factor 1 in relation to genotype, GFR, body composition, and survival in patients with CKD. American Journal of Kidney Diseases 2007 49 237244. (https://doi.org/10.1053/j.ajkd.2006.11.021)

    • Search Google Scholar
    • Export Citation
  • 37

    EbertTKralischSKlötingNHoffmannABlüherMZhangM-ZHarrisRCStumvollMFasshauerM. Circulating progranulin but not renal progranulin expression is increased in renal dysfunction. Kidney International 2015 88 11971198. (https://doi.org/10.1038/ki.2015.266)

    • Search Google Scholar
    • Export Citation
  • 38

    Chronic Kidney Disease Prognosis ConsortiumMatsushitaKvan der VeldeMAstorBCWoodwardMLeveyASde JongPECoreshJGansevoortRT. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010 375 20732081. (https://doi.org/10.1016/S0140-6736(10)60674-5)

    • Search Google Scholar
    • Export Citation
  • 39

    NordforsLLönnqvistFHeimbürgerODanielssonASchallingMStenvinkelP. Low leptin gene expression and hyperleptinemia in chronic renal failure. Kidney International 1998 54 12671275. (https://doi.org/10.1046/j.1523-1755.1998.00088.x)

    • Search Google Scholar
    • Export Citation
  • 40

    LeinningerGMOplandDMJoY-HFaouziMChristensenLCappellucciLARhodesCJGnegyMEBeckerJBPothosEN et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metabolism 2011 14 313323. (https://doi.org/10.1016/j.cmet.2011.06.016)

    • Search Google Scholar
    • Export Citation
  • 41

    ShulkesABijaphalaSDawbornJKFletcherDRHardyKJ. Metabolism of neurotensin and pancreatic polypeptide in man: role of the kidney and plasma factors. Journal of Clinical Endocrinology and Metabolism 1984 58 873879. (https://doi.org/10.1210/jcem-58-5-873)

    • Search Google Scholar
    • Export Citation
  • 42

    KraneVWinklerKDrechslerCLilienthalJMärzWWannerC. Association of LDL cholesterol and inflammation with cardiovascular events and mortality in hemodialysis patients with type 2 diabetes mellitus. American Journal of Kidney Diseases 2009 54 902911. (https://doi.org/10.1053/j.ajkd.2009.06.029)

    • Search Google Scholar
    • Export Citation
  • 43

    WannerCKraneVMärzWOlschewskiMMannJFERufGRitzE. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. New England Journal of Medicine 2005 353 238248. (https://doi.org/10.1056/NEJMoa043545)

    • Search Google Scholar
    • Export Citation
  • 44

    CarreroJJStenvinkelP. Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal. Clinical Journal of the American Society of Nephrology 2009 4 (Supplement 1) S49S55. (https://doi.org/10.2215/CJN.02720409)

    • Search Google Scholar
    • Export Citation