Genotypic and phenotypic spectrum of CCDC141 variants in a Chinese cohort with congenital hypogonadotropic hypogonadism

in European Journal of Endocrinology

Correspondence should be addressed to M Men or Jia-Da Li; Email: menmeichao@csu.edu.cn or lijiada@sklmg.edu.cn
Restricted access

Objective:

To identify CCDC141 variants in a large Chinese cohort with congenital hypogonadotropic hypogonadism (CHH) and to assess the contribution of CCDC141 to CHH.

Design:

Detailed phenotyping was conducted in CHH patients with CCDC141 variants and co-segregation analysis was performed, when possible.

Methods:

Whole-exome sequencing was performed in 177 CHH patients and 450 unrelated, ethnically matched controls from China.

Results:

Seven novel CCDC141 rare sequencing variants (RSVs) were identified in 12 CHH pedigrees. Four of the variants were private mutations; however, p.Q409X, p.Q871X and p.G1488S were identified in more than one patient. Up to 75% (9/12) of patients had mutations in other CHH-associated genes, which is significantly higher than CHH patients without CCDC141 RSVs. The co-segregation analysis for eight CHH families showed that 75% (6/8) CCDC141 RSVs were inherited from their fertile parents. Over half (58.3%, 8/18) of the patients exhibited other clinical deformities in addition to hypogonadism. One patient harbouring a CCDC141 RSV showed a reversal of CHH after sex-steroid replacement.

Conclusions:

Our results broaden the genotypic spectrum of CCDC141 in CHH, as CCDC141 RSVs alone do not appear sufficient to cause CHH. The phenotypic spectrum in patients with CCDC141 RSVs is much wider than originally believed.

Supplementary Materials

    • Table S1 The sequences for PCR primers

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 78 78 78
Full Text Views 17 17 17
PDF Downloads 14 14 14
  • 1

    KimSH. Congenital hypogonadotropic hypogonadism and Kallmann Syndrome: past, present, and future. Endocrinology and Metabolism 2015 30 456466. (https://doi.org/10.3803/EnM.2015.30.4.456)

    • Search Google Scholar
    • Export Citation
  • 2

    QuintonRDukeVMRobertsonAKirkJMMatfinGde ZoysaPAAzconaCMacCollGSJacobsHSConwayGS et al. Congenital gonadotrophin deficiency: genetic questions addressed through phenotypic characterization. Clinical Endocrinology 2001 55 163174. (https://doi.org/10.1046/j.1365-2265.2001.01277.x)

    • Search Google Scholar
    • Export Citation
  • 3

    Costa-BarbosaFABalasubramanianRKeefeKWShawNDAl-TassanNPlummerLDwyerAABuckCLChoiJHSeminaraSB et al. Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. Journal of Clinical Endocrinology and Metabolism 2013 98 E943E953. (https://doi.org/10.1210/jc.2012-4116)

    • Search Google Scholar
    • Export Citation
  • 4

    SandhyaNSwatiJAnuragLVarshaJAmolBReshmaPAlkaEPadmaMTusharBNaliniS et al. Spectrum of phenotype and genotype of congenital isolated hypogonadotropic hypogonadism in Asian Indians. Clinical Endocrinology 2016 85 100109. (https://doi.org/10.1111/cen.13009)

    • Search Google Scholar
    • Export Citation
  • 5

    BonomiMVezzoliVKrauszCGuizzardiFVezzaniSSimoniMBassiIDuminucoPDi IorgiNGiavoliC et al. Characteristics of a nationwide cohort of patients presenting with isolated hypogonadotropic hypogonadism (IHH). European Journal of Endocrinology 2018 178 2332. (https://doi.org/10.1530/EJE-17-0065)

    • Search Google Scholar
    • Export Citation
  • 6

    CasoniFMaloneSABelleMLuzzatiFCollierFAlletCHrabovszkyERasikaSPrevotVChédotalA et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 2016 143 39693981. (https://doi.org/10.1242/dev.139444)

    • Search Google Scholar
    • Export Citation
  • 7

    PitteloudNDurraniSRaivioTSykiotisGP. Complex genetics in idiopathic hypogonadotropic hypogonadism. Frontiers in Hormone Research 2010 39 142153. (https://doi.org/10.1159/000312700)

    • Search Google Scholar
    • Export Citation
  • 8

    MiraouiHDwyerAASykiotisGPPlummerLChungWFengBBeenkenAClarkeJPersTHPitteloudN et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. American Journal of Human Genetics 2013 92 725743. (https://doi.org/10.1016/j.ajhg.2013.04.008)

    • Search Google Scholar
    • Export Citation
  • 9

    GonçalvesCIAragüésJMBastosMBarrosLVicenteNCarvalhoDLemosMC. GNRHR biallelic and digenic mutations in patients with normosmic congenital hypogonadotropic hypogonadism. Endocrine Connections 2017 6 360366. (https://doi.org/10.1530/EC-17-0104)

    • Search Google Scholar
    • Export Citation
  • 10

    AmatoLMontenegroLRLerarioAMJorgeAGuerra JuniorGSchnollCRenckACTrarbachEBCostaEMendoncaBB et al. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism. European Journal of Endocrinology 2019 181 103119. (https://doi.org/10.1530/EJE-18-0764)

    • Search Google Scholar
    • Export Citation
  • 11

    YoungJBouligandJFrancouBRaffin-SansonMLGaillezSJeanpierreMGrynbergMKamenickyPChansonPBrailly-TabardS et al. TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. Journal of Clinical Endocrinology and Metabolism 2010 95 22872295. (https://doi.org/10.1210/jc.2009-2600)

    • Search Google Scholar
    • Export Citation
  • 12

    KeRMaXLeeL. Understanding the functions of kisspeptin and kisspeptin receptor (Kiss1R) from clinical case studies. Peptides 2019 120 170019. (https://doi.org/10.1016/j.peptides.2018.09.007)

    • Search Google Scholar
    • Export Citation
  • 13

    ZhaoYWuJWangXJiaHChenDNLiJD. Prokineticins and their G protein-coupled receptors in health and disease. Progress in Molecular Biology and Translational Science 2019 161 149179. (https://doi.org/10.1016/bs.pmbts.2018.09.006)

    • Search Google Scholar
    • Export Citation
  • 14

    GiacobiniPKopinASBeartPMMercerLDFasoloAWrayS. Cholecystokinin modulates migration of gonadotropin-releasing hormone-1 neurons. Journal of Neuroscience 2004 24 47374748. (https://doi.org/10.1523/JNEUROSCI.0649-04.2004)

    • Search Google Scholar
    • Export Citation
  • 15

    SoleckiDJTrivediNGovekEEKerekesRAGleasonSSHattenME. Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 2009 63 6380. (https://doi.org/10.1016/j.neuron.2009.05.028)

    • Search Google Scholar
    • Export Citation
  • 16

    HutchinsBIWrayS. Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process. Frontiers in Cellular Neuroscience 2014 8 400. (https://doi.org/10.3389/fncel.2014.00400)

    • Search Google Scholar
    • Export Citation
  • 17

    HutchinsBIKotanLDTaylor-BurdsCOzkanYChengPJGurbuzFTiongJDMengenETopalogluAKWrayS et al. CCDC141 mutation identified in anosmic hypogonadotropic hypogonadism (Kallmann syndrome) alters GnRH neuronal migration. Endocrinology 2016 157 19561966. (https://doi.org/10.1210/en.2015-1846)

    • Search Google Scholar
    • Export Citation
  • 18

    TuranIHutchinsBIHacihamdiogluBKotanLDGurbuzFUlubayAMengenEYukselBWraySTopalogluAK. CCDC141 mutations in congenital hypogonadotropic hypogonadism. Journal of Clinical Endocrinology and Metabolism 2017 102 18161825. (https://doi.org/10.1210/jc.2016-3391)

    • Search Google Scholar
    • Export Citation
  • 19

    GuoHJinXZhuTWangTTongPTianLPengYSunLWanAChenJ et al. SLC39A5 mutations interfering with the BMP/TGF-β pathway in non-syndromic high myopia. Journal of Medical Genetics 2014 51 518525. (https://doi.org/10.1136/jmedgenet-2014-102351)

    • Search Google Scholar
    • Export Citation
  • 20

    MenMLiWChenHWuJFengYGuoHLiJD. Identification of a novel CNV at 8q13 in a family with Branchio-Oto-Renal syndrome and epilepsy. Laryngoscope 2020 130 526532. (https://doi.org/10.1002/lary.27941)

    • Search Google Scholar
    • Export Citation
  • 21

    ShawNDSeminaraSBAuMGPlummerLMartinKAQuintonRMericqVCrowleyWFJrPitteloudNHallJE et al. Expanding the phenotype and genotype of female GnRH deficiency. Journal of Clinical Endocrinology and Metabolism 2011 96 E566E576. (https://doi.org/10.1210/jc.2010-2292)

    • Search Google Scholar
    • Export Citation
  • 22

    StamouMICoxKHCrowleyWF. Discovering genes essential to the hypothalamic regulation of human reproduction using a human disease model: adjusting to life in the ‘-Omics’ era. Endocrine Reviews 2015 36 603621. (https://doi.org/10.1210/er.2015-1045)

    • Search Google Scholar
    • Export Citation
  • 23

    MaioneLDwyerAAFrancouBGuiochon-MantelABinartNBouligandJYoungJ. Genetics in endocrinology: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. European Journal of Endocrinology 2018 178 R55R80. (https://doi.org/10.1530/EJE-17-0749)

    • Search Google Scholar
    • Export Citation
  • 24

    den DunnenJTAntonarakisSE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Human Mutation 2000 15 712. (https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<7::AID-HUMU4>3.0.CO;2-N)

    • Search Google Scholar
    • Export Citation
  • 25

    RichardsSAzizNBaleSBickDDasSGastier-FosterJGrodyWWHegdeMVoelkerdingKRehmHL & ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine 2015 17 405424. (https://doi.org/10.1038/gim.2015.30)

    • Search Google Scholar
    • Export Citation
  • 26

    SatoNKatsumataNKagamiMHasegawaTHoriNKawakitaSMinowadaSShimotsukaAShishibaYYokozawaM et al. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. Journal of Clinical Endocrinology and Metabolism 2004 89 10791088. (https://doi.org/10.1210/jc.2003-030476)

    • Search Google Scholar
    • Export Citation
  • 27

    PingaultVBodereauVBaralVMarcosSWatanabeYChaouiAFouveautCLeroyCVériermineOFrancannetC. Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. American Journal of Human Genetics 2013 92 707724. (https://doi.org/10.1016/j.ajhg.2013.03.024)

    • Search Google Scholar
    • Export Citation
  • 28

    DaiWWuJZhaoYJiangFZhengRChenDNMenMLiJD. Functional analysis of SOX10 mutations identified in Chinese patients with Kallmann syndrome. Gene 2019 702 99106. (https://doi.org/10.1016/j.gene.2019.03.039)

    • Search Google Scholar
    • Export Citation
  • 29

    MenMWuJZhaoYXingXJiangFZhengRLiJD. Genotypic and phenotypic spectra of FGFR1, FGF8, and FGF17 mutations in a Chinese cohort with isolated hypogonadotropic hypogonadism. Fertility and Sterility 2020 113 158166. (https://doi.org/10.1016/j.fertnstert.2019.08.069)

    • Search Google Scholar
    • Export Citation
  • 30

    DodéCLevilliersJDupontJMDeAPLeNSoussiyanicostasNCoimbraRSDelmaghaniSCompainnouailleSBaverelF. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nature Genetics 2003 33 463465. (https://doi.org/10.1038/ng1122)

    • Search Google Scholar
    • Export Citation
  • 31

    FukudaTSugitaSInatomeRYanagiS. CAMDI, a novel disrupted in schizophrenia 1 (DISC1)-binding protein, is required for radial migration. Journal of Biological Chemistry 2010 285 4055440561. (https://doi.org/10.1074/jbc.M110.179481)

    • Search Google Scholar
    • Export Citation
  • 32

    FukudaTNagashimaSAbeTKiyonariHInatomeRYanagiS. Rescue of CAMDI deletion-induced delayed radial migration and psychiatric behaviors by HDAC6 inhibitor. EMBO Reports 2016 17 17851798. (https://doi.org/10.15252/embr.201642416)

    • Search Google Scholar
    • Export Citation