Early effects of androgen deprivation on bone and mineral homeostasis in adult men: a prospective cohort study

in European Journal of Endocrinology
View More View Less
  • 1 Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Aging, KU Leuven, Leuven, Belgium
  • 2 Center for Metabolic Bone Diseases, Geriatrics Department, University Hospitals Leuven, Leuven, Belgium
  • 3 Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
  • 4 GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • 5 Department of Clinical Chemistry, University of Liège (ULg CHU), Liège, Belgium
  • 6 Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
  • 7 Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Correspondence should be addressed to B Decallonne; Email: brigitte.decallonne@uzleuven.be
Restricted access

Objective

Long-term androgen deprivation therapy (ADT) negatively influences bone. The short-term effects on bone and mineral homeostasis are less known. Therefore, we aimed to investigate the early effects of ADT on calcium/phosphate homeostasis and bone turnover.

Design

Prospective cohort study.

Methods

Eugonadal adult, male sex offenders, who were referred for ADT to the endocrine outpatient clinic, received cyproterone acetate. Changes in blood markers of calcium/phosphate homeostasis and bone turnover between baseline and first follow-up visit were studied.

Results

Of 26 screened patients, 17 were included. The median age was 44 (range 20–75) years. The median time interval between baseline and first follow-up was 13 (6–27) weeks. Compared to baseline, an 81% decrease was observed for median total testosterone (to 3.4 nmol/L (0.4–12.2); P < 0.0001) and free testosterone (to 0.06 nmol/L (0.01–0.18); P < 0.0001). Median total estradiol decreased by 71% (to 17.6 pmol/L (4.7–35.6); P < 0.0001). Increased serum calcium (P < 0.0001) and phosphate (P = 0.0016) was observed, paralleled by decreased PTH (P = 0.0156) and 1,25-dihydroxyvitamin D3 (P = 0.0134). The stable calcium isotope ratio (δ44/42Ca) decreased (P = 0.0458), indicating net calcium loss from bone. Bone-specific alkaline phosphatase and osteocalcin decreased (P < 0.0001 and P = 0.0056, respectively), periostin tended to decrease (P = 0.0500), whereas sclerostin increased (P < 0.0001), indicating suppressed bone formation. Serum bone resorption markers (TRAP, CTX) were unaltered.

Conclusions

In adult men, calcium release from the skeleton occurs early following sex steroid deprivation, reflecting early bone resorption. The increase of sclerostin and reduction of bone formation markers, without changes in resorption markers, suggests a dominant negative effect on bone formation in the acute phase.

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 1267 1267 41
Full Text Views 109 109 8
PDF Downloads 67 67 3
  • 1

    Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and androgens in skeletal physiology and pathophysiology. Physiological Reviews 2017 97 135187. (https://doi.org/10.1152/physrev.00033.2015)

    • Search Google Scholar
    • Export Citation
  • 2

    Wallander M, Axelsson KF, Lundh D, Lorentzon M. Patients with prostate cancer and androgen deprivation therapy have increased risk of fractures-a study from the fractures and fall injuries in the elderly cohort (FRAILCO). Osteoporosis International 2019 30 115125. (https://doi.org/10.1007/s00198-018-4722-3)

    • Search Google Scholar
    • Export Citation
  • 3

    Stoch SA, Parker RA, Chen L, Bubley G, Ko YJ, Vincelette A, Greenspan SL. Bone loss in men with prostate cancer treated with gonadotropin-releasing hormone agonists. Journal of Clinical Endocrinology and Metabolism 2001 86 27872791. (https://doi.org/10.1210/jcem.86.6.7558)

    • Search Google Scholar
    • Export Citation
  • 4

    Wang A, Karunasinghe N, Plank L, Zhu S, Osborne S, Bishop K, Brown C, Schwass T, Masters J & Holmes M et al. Effect of androgen deprivation therapy on bone mineral density in a prostate cancer cohort in New Zealand: a pilot study. Clinical Medicine Insights: Oncology 2017 11 1179554917733449. (https://doi.org/10.1177/1179554917733449)

    • Search Google Scholar
    • Export Citation
  • 5

    Greenspan SL, Coates P, Sereika SM, Nelson JB, Trump DL, Resnick NM. Bone loss after initiation of androgen deprivation therapy in patients with prostate cancer. Journal of Clinical Endocrinology and Metabolism 2005 90 64106417. (https://doi.org/10.1210/jc.2005-0183)

    • Search Google Scholar
    • Export Citation
  • 6

    Kimura T, Koike Y, Aikawa K, Kimura S, Mori K, Sasaki H, Miki K, Watanabe K, Saito M, Egawa S. Short-term impact of androgen deprivation therapy on bone strength in castration-sensitive prostate cancer. International Journal of Urology 2019 26 980984. (https://doi.org/10.1111/iju.14077)

    • Search Google Scholar
    • Export Citation
  • 7

    Isahaya E, Hara N, Nishiyama T, Hoshii T, Takizawa I, Takahashi K. Bone metabolic disorder in patients with prostate cancer receiving androgen deprivation therapy (ADT): impact of ADT on the growth hormone/insulin-like growth factor-1/parathyroid hormone axis. Prostate 2010 70 155161. (https://doi.org/10.1002/pros.21047)

    • Search Google Scholar
    • Export Citation
  • 8

    Dalla Via J, Daly RM, Owen PJ, Mundell NL, Rantalainen T, Fraser SF. Bone mineral density, structure, distribution and strength in men with prostate cancer treated with androgen deprivation therapy. Bone 2019 127 367375. (https://doi.org/10.1016/j.bone.2019.06.005)

    • Search Google Scholar
    • Export Citation
  • 9

    Poulsen MH, Frost M, Abrahamsen B, Gerke O, Walter S, Lund L. Osteoporosis and prostate cancer; a 24-month prospective observational study during androgen deprivation therapy. Scandinavian Journal of Urology 2019 53 3439. (https://doi.org/10.1080/21681805.2019.1570328)

    • Search Google Scholar
    • Export Citation
  • 10

    Briken P, Kafka MP. Pharmacological treatments for paraphilic patients and sexual offenders. Current Opinion in Psychiatry 2007 20 609613. (https://doi.org/10.1097/YCO.0b013e3282f0eb0b)

    • Search Google Scholar
    • Export Citation
  • 11

    Smid WJ, Kamphuis JH, Wever EC, Verbruggen MCFM. Risk levels, treatment duration, and drop out in a clinically composed outpatient sex offender treatment group. Journal of Interpersonal Violence 2015 30 727743. (https://doi.org/10.1177/0886260514536276)

    • Search Google Scholar
    • Export Citation
  • 12

    Gooren LJ. Clinical review: ethical and medical considerations of androgen deprivation treatment of sex offenders. Journal of Clinical Endocrinology and Metabolism 2011 96 36283637. (https://doi.org/10.1210/jc.2011-1540)

    • Search Google Scholar
    • Export Citation
  • 13

    Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet: Diabetes and Endocrinology 2017 5 908923. (https://doi.org/10.1016/S2213-8587(17)30184-5)

    • Search Google Scholar
    • Export Citation
  • 14

    Eastell R, Pigott T, Gossiel F, Naylor KE, Walsh JS, Peel NFA. Bone turnover markers: are they clinically useful? European Journal of Endocrinology 2018 178 R19R31. (https://doi.org/10.1530/EJE-17-0585)

    • Search Google Scholar
    • Export Citation
  • 15

    Ishizaki F, Hara N, Takizawa I, Nishiyama T, Isahaya E, Kawasaki T, Takahashi K. Deficiency in androgens and upregulation of insulin-like growth factor-1 are involved in high bone turnover in men receiving androgen deprivation therapy for prostate cancer. Growth Hormone and IGF Research 2012 22 122128. (https://doi.org/10.1016/j.ghir.2012.04.003)

    • Search Google Scholar
    • Export Citation
  • 16

    Morote J, M’Hammed YID, Martinez E, Esquena S, Lorente JA, Gelabert A. Increase of bone alkaline phosphatase after androgen deprivation therapy in patients with prostate cancer. Urology 2002 59 277280. (https://doi.org/10.1016/s0090-4295(01)01518-7)

    • Search Google Scholar
    • Export Citation
  • 17

    Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. Journal of Clinical Investigation 2000 106 15531560. (https://doi.org/10.1172/JCI10942)

    • Search Google Scholar
    • Export Citation
  • 18

    Thibaut F, De La Barra FDL, Gordon H, Cosyns P, Bradford JMW. The World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of paraphilias. World Journal of Biological Psychiatry 2010 11 604655. (https://doi.org/10.3109/15622971003671628)

    • Search Google Scholar
    • Export Citation
  • 19

    Assumpção AA, Garcia FD, Garcia HD, Bradford JMW, Thibaut F. Pharmacologic treatment of paraphilias. Psychiatric Clinics of North America 2014 37 173181. (https://doi.org/10.1016/j.psc.2014.03.002)

    • Search Google Scholar
    • Export Citation
  • 20

    Antonio L, Pauwels S, Laurent MR, Vanschoubroeck D, Jans I, Billen J, Claessens F, Decallonne B, De Neubourg D & Vermeersch P et al. Free testosterone reflects metabolic as well as ovarian disturbances in subfertile oligomenorrheic women. International Journal of Endocrinology 2018 2018 7956951. (https://doi.org/10.1155/2018/7956951)

    • Search Google Scholar
    • Export Citation
  • 21

    Pauwels S, Antonio L, Jans I, Lintermans A, Neven P, Claessens F, Decallonne B, Billen J, Vanderschueren D, Vermeersch P. Sensitive routine liquid chromatography-tandem mass spectrometry method for serum estradiol and estrone without derivatization. Analytical and Bioanalytical Chemistry 2013 405 85698577. (https://doi.org/10.1007/s00216-013-7259-5)

    • Search Google Scholar
    • Export Citation
  • 22

    Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. Journal of Clinical Endocrinology and Metabolism 1999 84 36663672. (https://doi.org/10.1210/jcem.84.10.6079)

    • Search Google Scholar
    • Export Citation
  • 23

    Cools M, Goemaere S, Baetens D, Raes A, Desloovere A, Kaufman JM, De Schepper J, Jans I, Vanderschueren D & Billen J et al. Calcium and bone homeostasis in heterozygous carriers of CYP24A1 mutations: a cross-sectional study. Bone 2015 81 8996. (https://doi.org/10.1016/j.bone.2015.06.018)

    • Search Google Scholar
    • Export Citation
  • 24

    Casetta B, Jans I, Billen J, Vanderschueren D, Bouillon R. Development of a method for the quantification of 1α,25(OH) 2 – vitamin D 3 in serum by liquid chromatography tandem mass spectrometry without derivatization. European Journal of Mass Spectrometry 2010 16 8189. (https://doi.org/10.1255/ejms.1024)

    • Search Google Scholar
    • Export Citation
  • 25

    Bouillon R, Vandoren G, Van Baelen H, De Moor P. Immunochemical measurement of the vitamin D-binding protein in rat serum. Endocrinology 1978 102 17101715. (https://doi.org/10.1210/endo-102-6-1710)

    • Search Google Scholar
    • Export Citation
  • 26

    Eisenhauer A, Müller M, Heuser A, Kolevica A, Glüer CC, Both M, Laue C, Hehn UV, Kloth S & Shroff R et al. Calcium isotope ratios in blood and urine: a new biomarker for the diagnosis of osteoporosis. Bone Reports 2019 10 100200. (https://doi.org/10.1016/j.bonr.2019.100200)

    • Search Google Scholar
    • Export Citation
  • 27

    Channon MB, Gordon GW, Morgan JLL, Skulan JL, Smith SM, Anbar AD. Using natural, stable calcium isotopes of human blood to detect and monitor changes in bone mineral balance. Bone 2015 77 6974. (https://doi.org/10.1016/j.bone.2015.04.023)

    • Search Google Scholar
    • Export Citation
  • 28

    Finkelstein JS, Lee H, Leder BZ, Burnett-Bowie SA, Goldstein DW, Hahn CW, Hirsch SC, Linker A, Perros N & Servais AB et al. Gonadal steroid-dependent effects on bone turnover and bone mineral density in men. Journal of Clinical Investigation 2016 126 11141125. (https://doi.org/10.1172/JCI84137)

    • Search Google Scholar
    • Export Citation
  • 29

    Holdsworth G, Roberts SJ, Ke HZ. Novel actions of sclerostin on bone. Journal of Molecular Endocrinology 2019 62 R167R185. (https://doi.org/10.1530/JME-18-0176)

    • Search Google Scholar
    • Export Citation
  • 30

    Garcia-Fontana B, Morales-Santana S, Varsavsky M, Garcia-Martin A, Garcia-Salcedo JA, Reyes-Garcia R, Munoz-Torres M. Sclerostin serum levels in prostate cancer patients and their relationship with sex steroids. Osteoporosis International 2014 25 645651. (https://doi.org/10.1007/s00198-013-2462-y)

    • Search Google Scholar
    • Export Citation
  • 31

    Di Nisio A, De Toni L, Speltra E, Rocca MS, Taglialavoro G, Ferlin A, Foresta C. Regulation of sclerostin production in human male osteocytes by androgens: experimental and clinical evidence. Endocrinology 2015 156 45344544. (https://doi.org/10.1210/en.2015-1244)

    • Search Google Scholar
    • Export Citation
  • 32

    Bonnet N, Garnero P, Ferrari S. Periostin action in bone. Molecular and Cellular Endocrinology 2016 432 7582. (https://doi.org/10.1016/j.mce.2015.12.014)

    • Search Google Scholar
    • Export Citation
  • 33

    Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ, Ferrari SL. The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. Journal of Biological Chemistry 2009 284 3593935950. (https://doi.org/10.1074/jbc.M109.060335)

    • Search Google Scholar
    • Export Citation
  • 34

    Bonnet N, Conway SJ, Ferrari SL. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. PNAS 2012 109 1504815053. (https://doi.org/10.1073/pnas.1203085109)

    • Search Google Scholar
    • Export Citation
  • 35

    Walsh JS, Gossiel F, Scott JR, Paggiosi MA, Eastell R. Effect of age and gender on serum periostin: relationship to cortical measures, bone turnover and hormones. Bone 2017 99 813. (https://doi.org/10.1016/j.bone.2017.03.041)

    • Search Google Scholar
    • Export Citation
  • 36

    Rousseau JC, Sornay-Rendu E, Bertholon C, Chapurlat R, Garnero P. Serum periostin is associated with fracture risk in postmenopausal women: a 7-year prospective analysis of the OFELY study. Journal of Clinical Endocrinology and Metabolism 2014 99 25332539. (https://doi.org/10.1210/jc.2013-3893)

    • Search Google Scholar
    • Export Citation
  • 37

    Leder BZ, LeBlanc KM, Schoenfeld DA, Eastell R, Finkelstein JS. Differential effects of androgens and estrogens on bone turnover in normal men. Journal of Clinical Endocrinology and Metabolism 2003 88 204210. (https://doi.org/10.1210/jc.2002-021036)

    • Search Google Scholar
    • Export Citation
  • 38

    Hamilton EJ, Ghasem-Zadeh A, Gianatti E, Lim-Joon D, Bolton D, Zebaze R, Seeman E, Zajac JD, Grossmann M. Structural decay of bone microarchitecture in men with prostate cancer treated with androgen deprivation therapy. Journal of Clinical Endocrinology and Metabolism 2010 95 E456E463. (https://doi.org/10.1210/jc.2010-0902)

    • Search Google Scholar
    • Export Citation
  • 39

    Burnett-Bowie SM, Mendoza N, Leder BZ. Effects of gonadal steroid withdrawal on serum phosphate and FGF-23 levels in men. Bone 2007 40 913918. (https://doi.org/10.1016/j.bone.2006.10.016)

    • Search Google Scholar
    • Export Citation
  • 40

    Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. Journal of Clinical Endocrinology and Metabolism 1996 81 43584365. (https://doi.org/10.1210/jcem.81.12.8954042)

    • Search Google Scholar
    • Export Citation
  • 41

    Hagenfeldt Y, Linde K, Sjoberg HE, Zumkeller W, Arver S. Testosterone increases serum 1,25-dihydroxyvitamin D and insulin-like growth factor-I in hypogonadal men. International Journal of Andrology 1992 15 93102. (https://doi.org/10.1111/j.1365-2605.1992.tb01118.x)

    • Search Google Scholar
    • Export Citation