Random ‘spot’ urinary metanephrines compared with 24-h-urinary and plasma results in phaeochromocytomas and paragangliomas

in European Journal of Endocrinology

Correspondence should be addressed to E Sbardella; Email: emi.sbardella@gmail.com
Restricted access

Background

In patients with phaeochromocytomas or paragangliomas (PPGLs), 24-h urine collections for metanephrines (uMNs) are cumbersome.

Objective

To evaluate the diagnostic utility of ratios to creatinine of ‘spot’ uMNs.

Methods

Concentrations of uMNs and plasma metanephrines (pMNs) were measured by HPLC-mass-spectrometry. We retrospectively compared correlations of 24-h-urine output and ratio to creatinine in historical specimens and prospectively assessed 24-h and contemporaneous spot urines and, where possible, pMNs. Using trimmed log-transformed values, we derived reference intervals based on age and sex for spot urines. We used multiples of upper limit of normal (ULNs) to compare areas under curves (AUCs) for receiver-operator characteristic curves of individual, and sum and product of, components.

Results

In 3143 24-h-urine specimens on 2416 patients, the correlation coefficients between the ratios and outputs of metanephrine, normetanephrine and 3-methoxytyramine in 24-h urines were 0.983, 0.905 and 0.875, respectively. In 96 patients, the correlations between plasma concentrations, urine output and ratios in spot specimens were similar to those for raw output or ratios in 24-h specimens. Of the 160 patients with PPGLs, the CIs for AUCs for individual metabolites overlapped for all four types of measurement, as did those for the sum of the multiple ULNs although these were slightly higher (AUC for spot urine: 0.838 (0.529–1), plasma: 0.929 (0.874–0.984) and output: 0.858 (0.764–0.952)).

Conclusions

Ratios of fractionated metanephrines to creatinine in spot urine samples appear to have a similar diagnostic power to other measurements. The ease of spot urine collection may facilitate diagnosis and follow-up of PPGLs through improved patient compliance.

Supplementary Materials

    • Supplementary Data 1
    • Supplementary Data 2

 

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 338 338 338
Full Text Views 59 59 59
PDF Downloads 40 40 40
  • 1

    ChrisoulidouAKaltsasGIliasIGrossmanAB. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocrine-Related Cancer 2007 14 569585. (https://doi.org/10.1677/ERC-07-0074)

    • Search Google Scholar
    • Export Citation
  • 2

    NoltingSGrossmanAPacakK. Metastatic phaeochromocytoma: spinning towards more promising treatment options. Experimental and Clinical Endocrinology and Diabetes 2019 127 117128. (https://doi.org/10.1055/a-0715-1888)

    • Search Google Scholar
    • Export Citation
  • 3

    SbardellaECranstonTIsidoriAMShineBPalAJafar-MohammadiBSadlerGMihaiRGrossmanAB. Routine genetic screening with a multi-gene panel in patients with pheochromocytomas. Endocrine 2018 59 175182. (https://doi.org/10.1007/s12020-017-1310-9)

    • Search Google Scholar
    • Export Citation
  • 4

    BurnichonNVescovoLAmarLLibeRde ReyniesAVenisseAJouannoELaurendeauIParfaitBBertheratJ Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Human Molecular Genetics 2011 20 39743985. (https://doi.org/10.1093/hmg/ddr324)

    • Search Google Scholar
    • Export Citation
  • 5

    FishbeinLLeshchinerIWalterVDanilovaLRobertsonAGJohnsonARLichtenbergTMMurrayBAGhayeeHKElseT Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 2017 31 181193. (https://doi.org/10.1016/j.ccell.2017.01.001)

    • Search Google Scholar
    • Export Citation
  • 6

    AndrewsKAAscherDBPiresDEVBarnesDRVialardLCaseyRTBradshawNAdlardJAylwinSBrennanP Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. Journal of Medical Genetics 2018 55 384394. (https://doi.org/10.1136/jmedgenet-2017-105127)

    • Search Google Scholar
    • Export Citation
  • 7

    GunawardanePTKGrossmanA. Phaeochromocytoma and paraganglioma. Advances in Experimental Medicine and Biology 2017 956 239259. (https://doi.org/10.1007/5584_2016_76)

    • Search Google Scholar
    • Export Citation
  • 8

    LendersJWEisenhoferGMannelliMPacakK. Phaeochromocytoma. Lancet 2005 366 665675. (https://doi.org/10.1016/S0140-6736(05)67139-5)

  • 9

    PlouinPFDuclosJMMenardJComoyEBohuonCAlexandreJM. Biochemical tests for diagnosis of phaeochromocytoma: urinary versus plasma determinations. BMJ 1981 282 853854. (https://doi.org/10.1136/bmj.282.6267.853)

    • Search Google Scholar
    • Export Citation
  • 10

    GitlowSEMendlowitzMBertaniLM. The biochemical techniques for detecting and establishing the presence of a pheochromocytoma. A review of ten years' experience. American Journal of Cardiology 1970 26 270279. (https://doi.org/10.1016/0002-9149(70)90794-0)

    • Search Google Scholar
    • Export Citation
  • 11

    SbardellaEMinnettiMD’AluisioDRizzaLDi GiorgioMRVinciFPofiRGiannettaEVenneriMAVestriA Cardiovascular features of possible autonomous cortisol secretion in patients with adrenal incidentalomas. European Journal of Endocrinology 2018 178 501511. (https://doi.org/10.1530/EJE-17-0986)

    • Search Google Scholar
    • Export Citation
  • 12

    EisenhoferGPrejbiszAPeitzschMPamporakiCMasjkurJRogowski-LehmannNLangtonKTsourdiEPęczkowskaMFliednerS Biochemical diagnosis of chromaffin cell tumors in patients at high and low risk of disease: plasma versus urinary free or deconjugated O-methylated catecholamine metabolites. Clinical Chemistry 2018 64 16461656. (https://doi.org/10.1373/clinchem.2018.291369)

    • Search Google Scholar
    • Export Citation
  • 13

    FotiAAdachiMDeQuattroV. The relationships of free to conjugated normetanephrine in plasma and spinal fluid of hypertensive patients. Journal of Clinical Endocrinology and Metabolism 1982 55 8185. (https://doi.org/10.1210/jcem-55-1-81)

    • Search Google Scholar
    • Export Citation
  • 14

    EisenhoferGPacakKHuynhTTQinNBratslavskyGLinehanWMMannelliMFribergPGrebeSKTimmersHJ Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. Endocrine-Related Cancer 2011 18 97111. (https://doi.org/10.1677/ERC-10-0211)

    • Search Google Scholar
    • Export Citation
  • 15

    LendersJWEisenhoferGArmandoIKeiserHRGoldsteinDSKopinIJ. Determination of metanephrines in plasma by liquid chromatography with electrochemical detection. Clinical Chemistry 1993 39 97103. (https://doi.org/10.1093/clinchem/39.1.97)

    • Search Google Scholar
    • Export Citation
  • 16

    EisenhoferGHuynhTTHiroiMPacakK. Understanding catecholamine metabolism as a guide to the biochemical diagnosis of pheochromocytoma. Reviews in Endocrine and Metabolic Disorders 2001 2 297311. (https://doi.org/10.1023/a:1011572617314)

    • Search Google Scholar
    • Export Citation
  • 17

    GardetVGattaBSimonnetGTabarinACheneGDucassouDCorcuffJB. Lessons from an unpleasant surprise: a biochemical strategy for the diagnosis of pheochromocytoma. Journal of Hypertension 2001 19 10291035. (https://doi.org/10.1097/00004872-200106000-00006)

    • Search Google Scholar
    • Export Citation
  • 18

    GerloEASevensC. Urinary and plasma catecholamines and urinary catecholamine metabolites in pheochromocytoma: diagnostic value in 19 cases. Clinical Chemistry 1994 40 250256. (https://doi.org/10.1093/clinchem/40.2.250)

    • Search Google Scholar
    • Export Citation
  • 19

    GrossmanAPacakKSawkaALendersJWHarlanderDPeastonRTReznekRSissonJEisenhoferG. Biochemical diagnosis and localization of pheochromocytoma: can we reach a consensus? Annals of the New York Academy of Sciences 2006 1073 332347. (https://doi.org/10.1196/annals.1353.038)

    • Search Google Scholar
    • Export Citation
  • 20

    SawkaAMPrebtaniAPThabaneLGafniALevineMYoungWFJr. A systematic review of the literature examining the diagnostic efficacy of measurement of fractionated plasma free metanephrines in the biochemical diagnosis of pheochromocytoma. BMC Endocrine Disorders 2004 4 2. (https://doi.org/10.1186/1472-6823-4-2)

    • Search Google Scholar
    • Export Citation
  • 21

    LendersJWPacakKWaltherMMLinehanWMMannelliMFribergPKeiserHRGoldsteinDSEisenhoferG. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA 2002 287 14271434. (https://doi.org/10.1001/jama.287.11.1427)

    • Search Google Scholar
    • Export Citation
  • 22

    SawkaAMJaeschkeRSinghRJYoungWFJr. A comparison of biochemical tests for pheochromocytoma: measurement of fractionated plasma metanephrines compared with the combination of 24-hour urinary metanephrines and catecholamines. Journal of Clinical Endocrinology and Metabolism 2003 88 553558. (https://doi.org/10.1210/jc.2002-021251)

    • Search Google Scholar
    • Export Citation
  • 23

    DavidsonDF. Phaeochromocytoma with normal urinary catecholamines: the potential value of urinary free metadrenalines. Annals of Clinical Biochemistry 2002 39 557566. (https://doi.org/10.1177/000456320203900603)

    • Search Google Scholar
    • Export Citation
  • 24

    PlouinPFAmarLDekkersOMFassnachtMGimenez-RoqueploAPLendersJWLussey-LepoutreCSteichenO & Guideline Working Group. European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma. European Journal of Endocrinology 2016 174 G1G10. (https://doi.org/10.1530/EJE-16-0033)

    • Search Google Scholar
    • Export Citation
  • 25

    ShepsSGTyceGMFlockEVMaherFT. Current experience in the diagnosis of pheochromocytoma. Circulation 1966 34 473483. (https://doi.org/10.1161/01.cir.34.3.473)

    • Search Google Scholar
    • Export Citation
  • 26

    BravoELGiffordRWJr. Current concepts. Pheochromocytoma: diagnosis, localization and management. New England Journal of Medicine 1984 311 12981303. (https://doi.org/10.1056/NEJM198411153112007)

    • Search Google Scholar
    • Export Citation
  • 27

    GrouzmannEDrouard-TroalenLBaudinEPlouinPFMullerBGrandDBuclinT. Diagnostic accuracy of free and total metanephrines in plasma and fractionated metanephrines in urine of patients with pheochromocytoma. European Journal of Endocrinology 2010 162 951960. (https://doi.org/10.1530/EJE-09-0996)

    • Search Google Scholar
    • Export Citation
  • 28

    LendersJWKeiserHRGoldsteinDSWillemsenJJFribergPJacobsMCKloppenborgPWThienTEisenhoferG. Plasma metanephrines in the diagnosis of pheochromocytoma. Annals of Internal Medicine 1995 123 101109. (https://doi.org/10.7326/0003-4819-123-2-199507150-00004)

    • Search Google Scholar
    • Export Citation
  • 29

    PerryCGSawkaAMSinghRThabaneLBajnarekJYoungWFJr. The diagnostic efficacy of urinary fractionated metanephrines measured by tandem mass spectrometry in detection of pheochromocytoma. Clinical Endocrinology 2007 66 703708. (https://doi.org/10.1111/j.1365-2265.2007.02805.x)

    • Search Google Scholar
    • Export Citation
  • 30

    LendersJWDuhQYEisenhoferGGimenez-RoqueploAPGrebeSKMuradMHNaruseMPacakKYoungWF & Endocrine Society. Pheochromocytoma and paraganglioma: an Endocrine Society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism 2014 99 19151942. (https://doi.org/10.1210/jc.2014-1498)

    • Search Google Scholar
    • Export Citation
  • 31

    SullivanJMSolomonHS. The diagnosis of pheochromocytoma. Overnight excretion of catecholamine metabolites. JAMA 1975 231 618619. (https://doi.org/10.1001/jama.1975.03240180054017)

    • Search Google Scholar
    • Export Citation
  • 32

    GangulyAHenryDPYuneHYPrattJHGrimCEDonohueJPWeinbergerMH. Diagnosis and localization of pheochromocytoma. Detection by measurement of urinary norepinephrine excretion during sleep, plasma norepinephrine concentration and computerized axial tomography (CT-scan). American Journal of Medicine 1979 67 2126. (https://doi.org/10.1016/0002-9343(79)90064-0)

    • Search Google Scholar
    • Export Citation
  • 33

    KaplanNMKramerNJHollandOBShepsSGGomez-SanchezC. Single-voided urine metanephrine assays in screening for pheochromocytoma. Archives of Internal Medicine 1977 137 190193. (https://doi.org/10.1001/archinte.1977.03630140040011)

    • Search Google Scholar
    • Export Citation
  • 34

    ZuoMZhenQZhangXZouWYangXTianGShiZLiQDingM. High specificity of spot urinary free metanephrines in diagnosis and prognosis of pheochromocytomas and paragangliomas by HPLC with electrochemical detection. Clinica Chimica Acta: International Journal of Clinical Chemistry 2018 478 8289. (https://doi.org/10.1016/j.cca.2017.12.026)

    • Search Google Scholar
    • Export Citation
  • 35

    BlandJMAltmanDG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986 1 307310. (https://doi.org/10.1016/j.ijnurstu.2009.10.001)

    • Search Google Scholar
    • Export Citation
  • 36

    HornPSFengLLiYPesceAJ. Effect of outliers and nonhealthy individuals on reference interval estimation. Clinical Chemistry 2001 47 21372145. (https://doi.org/10.1093/clinchem/47.12.2137)

    • Search Google Scholar
    • Export Citation
  • 37

    SbardellaEGrossmanAB. Pheochromocytoma: an approach to diagnosis. Best Practice and Research: Clinical Endocrinology and Metabolism 2020 34 101346. (https://doi.org/10.1016/j.beem.2019.101346)

    • Search Google Scholar
    • Export Citation
  • 38

    BrainKLKayJShineB. Measurement of urinary metanephrines to screen for pheochromocytoma in an unselected hospital referral population. Clinical Chemistry 2006 52 20602064. (https://doi.org/10.1373/clinchem.2006.070805)

    • Search Google Scholar
    • Export Citation
  • 39

    HickmanPELeongMChangJWilsonSRMcWhinneyB. Plasma free metanephrines are superior to urine and plasma catecholamines and urine catecholamine metabolites for the investigation of phaeochromocytoma. Pathology 2009 41 173177. (https://doi.org/10.1080/00313020802579284)

    • Search Google Scholar
    • Export Citation
  • 40

    OishiSSasakiMOhnoMSatoT. Urinary normetanephrine and metanephrine measured by radioimmunoassay for the diagnosis of pheochromocytoma: utility of 24-hour and random 1-hour urine determinations. Journal of Clinical Endocrinology and Metabolism 1988 67 614618. (https://doi.org/10.1210/jcem-67-3-614)

    • Search Google Scholar
    • Export Citation
  • 41

    EisenhoferGGoldsteinDSWaltherMMFribergPLendersJWKeiserHRPacakK. Biochemical diagnosis of pheochromocytoma: how to distinguish true- from false-positive test results. Journal of Clinical Endocrinology and Metabolism 2003 88 26562666. (https://doi.org/10.1210/jc.2002-030005)

    • Search Google Scholar
    • Export Citation
  • 42

    TakekoshiKSatohFTanabeAOkamotoTIchiharaATsuikiMKatabamiTNomuraMTanakaTMatsudaT Correlation between urinary fractionated metanephrines in 24-hour and spot urine samples for evaluating the therapeutic effect of Metyrosine: a subanalysis of a multicenter, open-label phase I/II study. Endocrine Journal 2019 66 10631072. (https://doi.org/10.1507/endocrj.EJ19-0125)

    • Search Google Scholar
    • Export Citation
  • 43

    BallaAOrtenziMPalmieriLCorallinoDMeoliFUrsiPPulianiGSbardellaEIsidoriAMGuerrieriM Laparoscopic bilateral anterior transperitoneal adrenalectomy: 24 years experience. Surgical Endoscopy 2019 33 37183724. (https://doi.org/10.1007/s00464-019-06665-6)

    • Search Google Scholar
    • Export Citation
  • 44

    NöltingSUllrichMPietzschJZieglerCGEisenhoferGAPacakK. Current management of pheochromocytoma/paraganglioma: a guide for the practicing clinician in the era of precision medicine. Cancers 2019 11 1505. (https://doi.org/10.3390/cancers11101505)

    • Search Google Scholar
    • Export Citation
  • 45

    RaoDPeitzschMPrejbiszAHanusKFassnachtMBeuschleinFBruggerCFliednerSLangtonKPamporakiC Plasma methoxytyramine: clinical utility with metanephrines for diagnosis of pheochromocytoma and paraganglioma. European Journal of Endocrinology 2017 177 103113. (https://doi.org/10.1530/EJE-17-0077)

    • Search Google Scholar
    • Export Citation