Seven-day remote ischaemic preconditioning improves endothelial function in patients with type 2 diabetes mellitus: a randomised pilot study

in European Journal of Endocrinology

Correspondence should be addressed to H Jones; Email: H.Jones1@ljmu.ac.uk *(J D Maxwell and H H Carter contributed equally to this work)
Restricted access

Background

Remote ischaemic preconditioning (rIPC) may improve cardiac/cerebrovascular outcomes of ischaemic events. Ischaemic damage caused by cardiovascular/cerebrovascular disease are primary causes of mortality in type 2 diabetes mellitus (T2DM). Due to the positive effects from a bout of rIPC within the vasculature, we explored if daily rIPC could improve endothelial and cerebrovascular function. The aim of this pilot study was to obtain estimates for the change in conduit artery and cerebrovascular function following a 7-day rIPC intervention.

Methods

Twenty-one patients with T2DM were randomly allocated to either 7-day daily upper-arm rIPC (4 × 5 min 220 mmHg, interspaced by 5-min reperfusion) or control. We examined peripheral endothelial function using flow mediated dilation (FMD) before and after ischemia-reperfusion injury (IRI, 20 min forearm ischaemic-20 min reperfusion) and cerebrovascular function, assessed by dynamic cerebral autoregulation (dCA) at three time points; pre, post and 8 days post intervention.

Results

For exploratory purposes, we performed statistical analysis on our primary comparison (pre-to-post) to provide an estimate of the change in the primary and secondary outcome variables. Using pre-intervention data as a covariate, the change from pre-post in FMD was 1.3% (95% CI: 0.69 to 3.80; P = 0.09) and 0.23 %cm/s %/mmHg mmHg/% (−0.12, 0.59; P = 0.18) in dCA normalised gain with rIPC versus control. Based upon this, a sample size of 20 and 50 for FMD and normalised gain, respectively, in each group would provide 90% power to detect statistically significant (P < 0.05) between-group difference in a randomised controlled trial.

Conclusion

We provide estimates of sample size for a randomised control trial exploring the impact of daily rIPC for 7 days on peripheral endothelial and cerebrovascular function. The directional changes outline from our pilot study suggest peripheral endothelial function can be enhanced by daily rIPC in patients with T2DM.

 

     European Society of Endocrinology

All Time Past Year Past 30 Days
Abstract Views 70 70 70
Full Text Views 15 15 15
PDF Downloads 5 5 5
  • 1

    LaaksoM. Cardiovascular disease in type 2 diabetes: challenge for treatment and prevention. Journal of Internal Medicine 2001 225–235. (https://doi.org/10.1046/j.1365-2796.2001.00789.x)

    • Search Google Scholar
    • Export Citation
  • 2

    OrasanuGPlutzkyJ. The pathologic continuum of diabetic vascular disease. Journal of the American College of Cardiology 2009 S35–S42. (https://doi.org/10.1016/j.jacc.2008.09.055)

    • Search Google Scholar
    • Export Citation
  • 3

    MarsoSPMillerTRutherfordBDGibbonsRJQureshiMKalynychATurcoMSchultheissHPMehranRKrucoffMW et al. Comparison of myocardial reperfusion in patients undergoing percutaneous coronary intervention in ST-segment elevation acute myocardial infarction with versus without diabetes mellitus (from the EMERALD Trial). American Journal of Cardiology 2007 206–210. (https://doi.org/10.1016/j.amjcard.2007.02.080)

    • Search Google Scholar
    • Export Citation
  • 4

    AlegriaJRMillerTDGibbonsRJYiQLYusufS & Collaborative Organization of RheothRx Evaluation (CORE) Trial Investigators. Infarct size, ejection fraction, and mortality in diabetic patients with acute myocardial infarction treated with thrombolytic therapy. American Heart Journal 2007 743–750. (https://doi.org/10.1016/j.ahj.2007.06.020)

    • Search Google Scholar
    • Export Citation
  • 5

    HaffnerSMLehtoSRonnemaaTPyoralaKLaaksoM. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine 1998 229–234. (https://doi.org/10.1056/NEJM199807233390404)

    • Search Google Scholar
    • Export Citation
  • 6

    CreagerMALuscherTFCosentinoFBeckmanJA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 2003 1527–1532. (https://doi.org/10.1161/01.CIR.0000091257.27563.32)

    • Search Google Scholar
    • Export Citation
  • 7

    BoussageonRBejan-AngoulvantTSaadatian-ElahiMLafontSBergeonneauCKassaïBErpeldingerSWrightJMGueyffierFCornuC. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 2011 d4169. (https://doi.org/10.1136/bmj.d4169)

    • Search Google Scholar
    • Export Citation
  • 8

    ChudykAPetrellaRJ. Effects of exercise on cardiovascular risk factors in type 2 diabetes: a meta-analysis. Diabetes Care 2011 1228–1237. (https://doi.org/10.2337/dc10-1881)

    • Search Google Scholar
    • Export Citation
  • 9

    MorratoEHHillJOWyattHRGhushchyanVSullivanPW. Physical activity in U.S. adults with diabetes and at risk for developing diabetes, 2003. Diabetes Care 2007 203–209. (https://doi.org/10.2337/dc06-1128)

    • Search Google Scholar
    • Export Citation
  • 10

    HermannGHerbstASchuttMKempeHPKrakowDMuller-KorbschMHollRW & Diabetes Patienten Verlaufsdokumentation (DPV)-initiative and the BMBF Competence Network Diabetes Mellitus. Association of physical activity with glycaemic control and cardiovascular risk profile in 65 666 people with type 2 diabetes from Germany and Austria. Diabetic Medicine 2014 905–912. (https://doi.org/10.1111/dme.12438)

    • Search Google Scholar
    • Export Citation
  • 11

    PrzyklenkKBauerBOvizeMKlonerRAWhittakerP. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993 893–899. (https://doi.org/10.1161/01.cir.87.3.893)

    • Search Google Scholar
    • Export Citation
  • 12

    HeuschGBøtkerHEPrzyklenkKRedingtonAYellonD. Remote ischemic conditioning. Journal of the American College of Cardiology 2015 177–195. (https://doi.org/10.1016/j.jacc.2014.10.031)

    • Search Google Scholar
    • Export Citation
  • 13

    ThijssenDHMaxwellJGreenDJCableNTJonesH. Repeated ischaemic preconditioning: a novel therapeutic intervention and potential underlying mechanisms. Experimental Physiology 2016 677–692. (https://doi.org/10.1113/EP085566)

    • Search Google Scholar
    • Export Citation
  • 14

    JonesHHopkinsNBaileyTGGreenDJCableNTThijssenDH. Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans. American Journal of Hypertension 2014 918–925. (https://doi.org/10.1093/ajh/hpu004)

    • Search Google Scholar
    • Export Citation
  • 15

    JonesHNyakayiruJBaileyTGGreenDJCableNTSprungVSHopkinsNDThijssenDH. Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. European Journal of Preventive Cardiology 2015 1083–1087. (https://doi.org/10.1177/2047487314547657)

    • Search Google Scholar
    • Export Citation
  • 16

    LucaMCLiuniAMcLaughlinKGoriTParkerJD. Daily ischemic preconditioning provides sustained protection from ischemia-reperfusion induced endothelial dysfunction: a human study. Journal of the American Heart Association 2013 e000075. (https://doi.org/10.1161/JAHA.112.000075)

    • Search Google Scholar
    • Export Citation
  • 17

    KimuraMUedaKGotoCJitsuikiDNishiokaKUmemuraTNomaKYoshizumiMChayamaKHigashiY. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology 2007 1403–1410. (https://doi.org/10.1161/ATVBAHA.107.143578)

    • Search Google Scholar
    • Export Citation
  • 18

    KonoYFukudaSHanataniANakanishiKOtsukaKTaguchiHShimadaK. Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. Drug Design, Development and Therapy 2014 1175–1181. (https://doi.org/10.2147/DDDT.S68715)

    • Search Google Scholar
    • Export Citation
  • 19

    ShakedGCzeigerDAbu ArarAKatzTHarman-BoehmISebbagG. Intermittent cycles of remote ischemic preconditioning augment diabetic foot ulcer healing. Wound Repair and Regeneration 2015 191–196. (https://doi.org/10.1111/wrr.12269)

    • Search Google Scholar
    • Export Citation
  • 20

    MengRAsmaroKMengLLiuYMaCXiCLiGRenCLuoYLingF et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 2012 1853–1861. (https://doi.org/10.1212/WNL.0b013e318271f76a)

    • Search Google Scholar
    • Export Citation
  • 21

    MengRDingYAsmaroKBroganDMengLSuiMShiJDuanYSunZYuY et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics 2015 667–677. (https://doi.org/10.1007/s13311-015-0358-6)

    • Search Google Scholar
    • Export Citation
  • 22

    AvogaroAAlbieroMMenegazzoLde KreutzenbergSFadiniGP. Endothelial dysfunction in diabetes: the role of reparatory mechanisms. Diabetes Care 2011 (Supplement 2) S285–S290. (https://doi.org/10.2337/dc11-s239)

    • Search Google Scholar
    • Export Citation
  • 23

    RandhawaPKJaggiAS. Unraveling the role of adenosine in remote ischemic preconditioning-induced cardioprotection. Life Sciences 2016 140–146. (https://doi.org/10.1016/j.lfs.2016.05.009)

    • Search Google Scholar
    • Export Citation
  • 24

    TakadaJIbayashiSNagaoTOoboshiHKitazonoTFujishimaM. Bradykinin mediates the acute effect of an angiotensin-converting enzyme inhibitor on cerebral autoregulation in rats. Stroke 2001 1216–1219. (https://doi.org/10.1161/01.str.32.5.1216)

    • Search Google Scholar
    • Export Citation
  • 25

    GuoZNShaoATongLSSunWLiuJYangY. The role of nitric oxide and sympathetic control in cerebral autoregulation in the setting of subarachnoid hemorrhage and traumatic brain injury. Molecular Neurobiology 2016 3606–3615. (https://doi.org/10.1007/s12035-015-9308-x)

    • Search Google Scholar
    • Export Citation
  • 26

    GuoZNGuoWTLiuJChangJMaHZhangPZhangFLHanKHuHHJinH et al. Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning. Neurology 2019 e8–e19. (https://doi.org/10.1212/WNL.0000000000007732)

    • Search Google Scholar
    • Export Citation
  • 27

    SchulzKFAltmanDGMoherD & CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 2010 c332. (https://doi.org/10.1136/bmj.c332)

    • Search Google Scholar
    • Export Citation
  • 28

    AinsliePNMurrellCPeeblesKSwartMSkinnerMAWilliamsMJTaylorRD. Early morning impairment in cerebral autoregulation and cerebrovascular CO2 reactivity in healthy humans: relation to endothelial function. Experimental Physiology 2007 769–777. (https://doi.org/10.1113/expphysiol.2006.036814)

    • Search Google Scholar
    • Export Citation
  • 29

    JonesHGreenDJGeorgeKAtkinsonG. Intermittent exercise abolishes the diurnal variation in endothelial-dependent flow-mediated dilation in humans. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 2010 R427–R432. (https://doi.org/10.1152/ajpregu.00442.2009)

    • Search Google Scholar
    • Export Citation
  • 30

    ThijssenDHBlackMAPykeKEPadillaJAtkinsonGHarrisRAParkerBWidlanskyMETschakovskyMEGreenDJ. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. American Journal of Physiology: Heart and Circulatory Physiology 2011 H2–H12. (https://doi.org/10.1152/ajpheart.00471.2010)

    • Search Google Scholar
    • Export Citation
  • 31

    van MilACGreylingAZockPLGeleijnseJMHopmanMTMensinkRPReesinkKDGreenDJGhiadoniLThijssenDH. Impact of volunteer-related and methodology-related factors on the reproducibility of brachial artery flow-mediated vasodilation: analysis of 672 individual repeated measurements. Journal of Hypertension 2016 1738–1745. (https://doi.org/10.1097/HJH.0000000000001012)

    • Search Google Scholar
    • Export Citation
  • 32

    BlackMACableNTThijssenDHGreenDJ. Importance of measuring the time course of flow-mediated dilatation in humans. Hypertension 2008 203–210. (https://doi.org/10.1161/HYPERTENSIONAHA.107.101014)

    • Search Google Scholar
    • Export Citation
  • 33

    WoodmanRJPlayfordDAWattsGFCheethamCReedCTaylorRRPuddeyIBBeilinLJBurkeVMoriTA et al. Improved analysis of brachial artery ultrasound using a novel edge-detection software system. Journal of Applied Physiology 2001 929–937. (https://doi.org/10.1152/jappl.2001.91.2.929)

    • Search Google Scholar
    • Export Citation
  • 34

    AtkinsonGBatterhamAM. Allometric scaling of diameter change in the original flow-mediated dilation protocol. Atherosclerosis 2013 425–427. (https://doi.org/10.1016/j.atherosclerosis.2012.11.027)

    • Search Google Scholar
    • Export Citation
  • 35

    LoukogeorgakisSPPanagiotidouATBroadheadMWDonaldADeanfieldJEMacAllisterRJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. Journal of the American College of Cardiology 2005 450–456. (https://doi.org/10.1016/j.jacc.2005.04.044)

    • Search Google Scholar
    • Export Citation
  • 36

    LoukogeorgakisSPvan den BergMJSofatRNitschDCharakidaMHaiyeeBde GrootEMacAllisterRJKuijpersTWDeanfieldJE. Role of NADPH oxidase in endothelial ischemia/reperfusion injury in humans. Circulation 2010 2310–2316. (https://doi.org/10.1161/CIRCULATIONAHA.108.814731)

    • Search Google Scholar
    • Export Citation
  • 37

    Aboo BakkarZFulfordJGatesPEJackmanSRJonesAMBondBBowtellJL. Prolonged forearm ischemia attenuates endothelium-dependent vasodilatation and plasma nitric oxide metabolites in overweight middle-aged men. European Journal of Applied Physiology 2018 1565–1572. (https://doi.org/10.1007/s00421-018-3886-z)

    • Search Google Scholar
    • Export Citation
  • 38

    WillieCKColinoFLBaileyDMTzengYCBinstedGJonesLWHaykowskyMJBellapartJOgohSSmithKJ et al. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. Journal of Neuroscience Methods 2011 221–237. (https://doi.org/10.1016/j.jneumeth.2011.01.011)

    • Search Google Scholar
    • Export Citation
  • 39

    ClaassenJALevineBDZhangR. Dynamic cerebral autoregulation during repeated squat-stand maneuvers. Journal of Applied Physiology 2009 153–160. (https://doi.org/10.1152/japplphysiol.90822.2008)

    • Search Google Scholar
    • Export Citation
  • 40

    SimpsonDClaassenJ. CrossTalk opposing view: dynamic cerebral autoregulation should be quantified using induced (rather than spontaneous) blood pressure fluctuations. Journal of Physiology 2018 7–9. (https://doi.org/10.1113/JP273900)

    • Search Google Scholar
    • Export Citation
  • 41

    ClaassenJAMeel-van den AbeelenASSimpsonDMPaneraiRB & International Cerebral Autoregulation Research Network (CARNet). Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network. Journal of Cerebral Blood Flow and Metabolism 2016 665–680. (https://doi.org/10.1177/0271678X15626425)

    • Search Google Scholar
    • Export Citation
  • 42

    SchreuderTHGreenDJNyakayiruJHopmanMTThijssenDH. Time-course of vascular adaptations during 8 weeks of exercise training in subjects with type 2 diabetes and middle-aged controls. European Journal of Applied Physiology 2015 187–196. (https://doi.org/10.1007/s00421-014-3006-7)

    • Search Google Scholar
    • Export Citation
  • 43

    InabaYChenJABergmannSR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. International Journal of Cardiovascular Imaging 2010 631–640. (https://doi.org/10.1007/s10554-010-9616-1)

    • Search Google Scholar
    • Export Citation
  • 44

    van BeekAHLagroJOlde-RikkertMGZhangRClaassenJA. Oscillations in cerebral blood flow and cortical oxygenation in Alzheimer’s disease. Neurobiology of Aging 2012 428.e21–428.e31. (https://doi.org/10.1016/j.neurobiolaging.2010.11.016)

    • Search Google Scholar
    • Export Citation
  • 45

    LewisNGelinasJCMAinsliePNSmirlJDAgarGMelzerBRolfJDEvesND. Cerebrovascular function in patients with chronic obstructive pulmonary disease: the impact of exercise training. American Journal of Physiology: Heart and Circulatory Physiology 2019 H380–H391. (https://doi.org/10.1152/ajpheart.00348.2018)

    • Search Google Scholar
    • Export Citation
  • 46

    Calles-EscandonJCipollaM. Diabetes and endothelial dysfunction: a clinical perspective. Endocrine Reviews 2001 36–52. (https://doi.org/10.1210/edrv.22.1.0417)

    • Search Google Scholar
    • Export Citation
  • 47

    TabitCEChungWBHamburgNMVitaJA. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Reviews in Endocrine and Metabolic Disorders 2010 61–74. (https://doi.org/10.1007/s11154-010-9134-4)

    • Search Google Scholar
    • Export Citation
  • 48

    SenaCMPereiraAMSeicaR. Endothelial dysfunction – a major mediator of diabetic vascular disease. Biochimica et Biophysica Acta 2013 2216–2231. (https://doi.org/10.1016/j.bbadis.2013.08.006)

    • Search Google Scholar
    • Export Citation
  • 49

    LuscherTFCreagerMABeckmanJACosentinoF. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Circulation 2003 1655–1661. (https://doi.org/10.1161/01.CIR.0000089189.70578.E2)

    • Search Google Scholar
    • Export Citation
  • 50

    CohnJNQuyyumiAAHollenbergNKJamersonKA. Surrogate markers for cardiovascular disease: functional markers. Circulation 2004 IV31–IV46. (https://doi.org/10.1161/01.CIR.0000133442.99186.39)

    • Search Google Scholar
    • Export Citation
  • 51

    GreenDJDawsonEAGroenewoudHMJonesHThijssenDH. Is flow-mediated dilation nitric oxide mediated? A meta-analysis. Hypertension 2014 376–382. (https://doi.org/10.1161/HYPERTENSIONAHA.113.02044)

    • Search Google Scholar
    • Export Citation
  • 52

    WilliamsSBCuscoJARoddyMAJohnstoneMTCreagerMA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. Journal of the American College of Cardiology 1996 567–574. (https://doi.org/10.1016/0735-1097(95)00522-6)

    • Search Google Scholar
    • Export Citation
  • 53

    HillJMZalosGHalcoxJPSchenkeWHWaclawiwMAQuyyumiAAFinkelT. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine 2003 593–600. (https://doi.org/10.1056/NEJMoa022287)

    • Search Google Scholar
    • Export Citation
  • 54

    KharbandaRKPetersMWaltonBKattenhornMMullenMKleinNVallancePDeanfieldJMacAllisterR. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation 2001 1624–1630. (https://doi.org/10.1161/01.cir.103.12.1624)

    • Search Google Scholar
    • Export Citation
  • 55

    RussoIPennaCMussoTPoparaJAlloattiGCavalotFPagliaroP. Platelets, diabetes and myocardial ischemia/reperfusion injury. Cardiovascular Diabetology 2017 71. (https://doi.org/10.1186/s12933-017-0550-6)

    • Search Google Scholar
    • Export Citation
  • 56

    RogerVLGoASLloyd-JonesDMBenjaminEJBerryJDBordenWBBravataDMDaiSFordESFoxCS et al. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 2012 e2–e220. (https://doi.org/10.1161/CIR.0b013e31823ac046)

    • Search Google Scholar
    • Export Citation
  • 57

    TzengYCAinsliePN. Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. European Journal of Applied Physiology 2014 545–559. (https://doi.org/10.1007/s00421-013-2667-y)

    • Search Google Scholar
    • Export Citation
  • 58

    PetersonECWangZBritzG. Regulation of cerebral blood flow. International Journal of Vascular Medicine 2011 823525. (https://doi.org/10.1155/2011/823525)

    • Search Google Scholar
    • Export Citation
  • 59

    WangYMengRSongHLiuGHuaYCuiDZhengLFengWLiebeskindDSFisherM et al. Remote ischemic conditioning may improve outcomes of patients with cerebral small-vessel disease. Stroke 2017 3064–3072. (https://doi.org/10.1161/STROKEAHA.117.017691)

    • Search Google Scholar
    • Export Citation
  • 60

    ZhouHZhangXLuJ. Progress on diabetic cerebrovascular diseases. Bosnian Journal of Basic Medical Sciences 2014 185–190. (https://doi.org/10.17305/bjbms.2014.4.203)

    • Search Google Scholar
    • Export Citation
  • 61

    FerdinandyPHausenloyDJHeuschGBaxterGFSchulzR. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacological Reviews 2014 1142–1174. (https://doi.org/10.1124/pr.113.008300)

    • Search Google Scholar
    • Export Citation
  • 62

    AinsliePNHoilandRL. Transcranial Doppler ultrasound: valid, invalid, or both? Journal of Applied Physiology 2014 1081–1083. (https://doi.org/10.1152/japplphysiol.00854.2014)

    • Search Google Scholar
    • Export Citation