Effect of insulin resistance on whole blood mRNA and microRNA expression affecting bone turnover

in European Journal of Endocrinology
Restricted access

Objective

To evaluate the effect of insulin resistance in obesity on the expression in whole blood of mRNA and miRNA affecting bone homeostasis as well as to estimate the influence of oral glucose load (OGTT) on serum osteocalcin concentration in obese individuals with and without insulin resistance.

Design

Cross-sectional study.

Methods

Carboxylated (cOC), undercarboxylated (ucOC) and total osteocalcin were measured by ELISA in the serum of obese subjects with insulin resistance (n = 41) and obese subjects without insulin resistance (n = 41) (control group) during OGTT. Analysis of gene expression (microarray) and miRNAs (real-time PCR) was performed in venous blood (representating samples) collected before OGTT from obese with insulin resistance and controls.

Results

Obese subjects with insulin resistance (higher HOMA-IR and lower oral glucose insulin sensitivity index) presented significantly increased expression of WNT signalling inhibitors (DKK1, DKK2, SOST, SFRP1) and downregulation of the key factor in WNT signalling – β catenin participating in osteoblasts differentiation. Expression of miRNA involved in osteoblastogenesis was also inhibited (miR-29b, miR-181a, miR-210, miR-324-3p). During OGTT, contrary to the control group, subjects with insulin resistance presented suppression of cOC and total OC decrease after 1 and 2 h of oral glucose load.

Conclusions

Obese subjects with insulin resistance may have defects in osteoblastogenesis that was demonstrated via key signalling molecules mRNA downregulation, and increased expression of WNT antagonists as well as inhibition of expression of miRNA participating in the regulation of osteoblast differentiation. Disturbed osteoblastogenesis in insulin-resistant subjects results in the suppression of blood carboxylated and total osteocalcin decrease during OGTT.

 

     European Society of Endocrinology

All Time Past Year Past 30 Days
Abstract Views 146 146 146
Full Text Views 6 6 6
PDF Downloads 4 4 4
  • 1

    FerronMWeiJYoshizawaTDel FattoreADePinhoRATetiADucyPKarsentyG. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010 296–308. (https://doi.org/10.1016/j.cell.2010.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    HauschkaPVLianJBColeDEGundbergCM. Osteocalcin and matrix gla protein: vitamin K-dependent proteins in bone. Physiological Reviews 1989 990–1047. (https://doi.org/10.1152/physrev.1989.69.3.990)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    PricePARiceJSWilliamsonMK. Conserved phosphorylation of serines in the Ser-X-Glu/Ser(P) sequences of the vitamin K-dependent matrix gla protein from shark, lamb, rat, cow, and human. Protein Science 1994 822–830. (https://doi.org/10.1002/pro.5560030511)

    • Search Google Scholar
    • Export Citation
  • 4

    LeeNKSowaHHinoiEFerronMAhnJDConfavreuxCDacquinRMeePJMcKeeMDJungDY, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007 456–469. (https://doi.org/10.1016/j.cell.2007.05.047)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    FerronMLacombeJ. Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Archives of Biochemistry and Biophysics 2014 137–146. (https://doi.org/10.1016/j.abb.2014.05.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    FerronMHinoiEKarsentyGDucyP. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proceedings of the National Academy of Sciences of the United States of America 2008 5266–5270. (https://doi.org/10.1073/pnas.0711119105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    RaznyUFedakDKiec-WilkBGoralskaJGrucaAZdzienickaAKiec-KlimczakMSolnicaBHubalewska-DydejczykAMalczewska-MalecM. Carboxylated and undercarboxylated osteocalcin in metabolic complications of human obesity and prediabetes. Diabetes/Metabolism Research and Reviews 2017 e2862. (https://doi.org/10.1002/dmrr.2862)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    LinXBrennan-SperanzaTCLevingerIYeapBB. Undercarboxylated osteocalcin: experimental and human evidence for a role in glucose homeostasis and muscle regulation of insulin sensitivity. Nutrients 2018 847. (https://doi.org/10.3390/nu10070847)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    MarupanthornKTantrawatpanChKheolamaiPTantikanlayapornDManochantrS. Bone morphogenetic protein-2 enhances the osteogenic differentiation capacity of mesenchymal stromal cells derived from human bone marrow and umbilical cord. International Journal of Molecular Medicine 2017 654–662. (https://doi.org/10.3892/ijmm.2017.2872)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Eghbali-FatourechiGZMödderUICharatcharoenwitthayaNSanyalAUndaleAHClowesJATararaJEKhoslaS. Characterization of circulating osteoblast lineage cells in humans. Bone 2007 1370–1377. (https://doi.org/10.1016/j.bone.2006.12.064)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    MutoAMizoguchiTUdagawaNItoSKawaharaIAbikoYAraiAHaradaSKobayashiYNakamichiY, et al. Lineage-committed osteoclast precursors circulate in blood and settle down into bone. Journal of Bone and Mineral Research 2011 2978–2990. (https://doi.org/10.1002/jbmr.490)

    • Search Google Scholar
    • Export Citation
  • 12

    ZhouYDengHWShenH. Circulating monocytes: an appropriate model for bone-related study. Osteoporosis International 2015 2561–2572. (https://doi.org/10.1007/s00198-015-3250-7)

    • Search Google Scholar
    • Export Citation
  • 13

    MatsuzakiKUdagawaNTakahashiNYamaguchiKYasudaHShimaNMorinagaTToyamaYYabeYHigashioK, et al. Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures. Biochemical and Biophysical Research Communications 1998 199–204. (https://doi.org/10.1006/bbrc.1998.8586)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    ShalhoubVElliottGChiuLManoukianRKelleyMHawkinsNDavyEShimamotoGBeckJKaufmanSA, et al. Characterization of osteoclast precursors in human blood. British Journal of Haematology 2000 501–512. (https://doi.org/10.1046/j.1365-2141.2000.02379.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    MizoguchiTMutoAUdagawaNAraiAYamashitaTHosoyaANinomiyaTNakamuraHYamamotoYKinugawaS, et al. Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. The Journal of Cell Biology 2009 541–554. (https://doi.org/10.1083/jcb.200806139)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    MariAPaciniGMurphyELudvikBNolanJJ. A model based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 2001 539–548. (https://doi.org/10.2337/diacare.24.3.539)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    MatsudaMDeFronzoRA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999 1462–1470. (https://doi.org/10.2337/diacare.22.9.1462)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    FeichtingerXMuschitzCHeimelPBaierlAFahrleitner-PammerARedlHReschHGeigerESkalickySDormannR, et al. Bone-related circulating microRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their association to bone microstructure and histomorphometry. Scientific Reports 2018 4867. (https://doi.org/10.1038/s41598-018-22844-2)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    KocijanRMuschitzCGeigerESkalickySBaierlADormannRPlachelFFeichtingerXHeimelPFahrleitner-PammerA, et al. Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. Journal of Clinical Endocrinology and Metabolism 2016 4125–4134. (https://doi.org/10.1210/jc.2016-2365)

    • Search Google Scholar
    • Export Citation
  • 20

    LiZHassanMQJafferjiMAqeilanRIGarzonRCroceCMvan WijnenAJSteinJLSteinGSLianJB. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. The Journal of Biological Chemistry 2009 15676–15684. (https://doi.org/10.1074/jbc.M809787200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    ViljakainenHIvaskaKKPaldániusPLipsanen-NymanMSaukkonenTPietiläinenKHAnderssonSLaitinenKMäkitieO. Suppressed bone turnover in obesity: a link to energy metabolism? A case-control study. Journal of Clinical Endocrinology and Metabolism 2014 2155–2163. (https://doi.org/10.1210/jc.2013-3097)

    • Search Google Scholar
    • Export Citation
  • 22

    SemenovMTamaiKHeX. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. Journal of Biological Chemistry 2005 26770–26775. (https://doi.org/10.1074/jbc.M504308200)

    • Search Google Scholar
    • Export Citation
  • 23

    MaoBWuWDavidsonGMarholdJLiMMechlerBMDeliusHHoppeDStannekPWalterC, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signaling. Nature 2002 664–667. (https://doi.org/10.1038/nature756)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    MaoBWuWLiYHoppeDStannekPGlinkaANiehrsC. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 2001 321–325. (https://doi.org/10.1038/35077108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    PengYKangQChengHLiXSunMHJiangWLuuHHParkJYHaydonRCHeTC. Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. Journal of Cellular Biochemistry 2003 1149–1165. (https://doi.org/10.1002/jcb.10744)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    TanXWengTZhangJWangJLiWWanHLanYChengXHouNLiuH, et al. Smad4 is required for maintaining normal murine postnatal bone homeostasis. Journal of Cell Science 2007 2162–2170. (https://doi.org/10.1242/jcs.03466)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    AsagiriMTakayanagiH. The molecular understanding of osteoclast differentiation. Bone 2007 251–264. (https://doi.org/10.1016/j.bone.2006.09.023)

  • 28

    KronenbergHM. Twist genes regulate Runx2 and bone formation. Developmental Cell 2004 317–318. (https://doi.org/10.1016/S1534-5807(04)00069-3)

  • 29

    BialekPKernBYangXSchrockMSosicDHongNWuHYuKOrnitzDMOlsonEN, et al. A twist code determines the onset of osteoblast differentiation. Developmental Cell 2004 423–435. (https://doi.org/10.1016/S1534-5807(04)00058-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    ParedesRArriagadaGCruzatFVillagraAOlateJZaidiKvan WijnenALianJBSteinGSSteinJL, Bone-specific transcription factor Runx2 interacts with the 1α,25-dihydroxyvitamin D3 receptor to up-regulate rat osteocalcin gene expression in osteoblastic cells. Molecular & Cellular Biology 2004 8847–8861. (https://doi.org/10.1128/MCB.24.20.8847-8861.2004)

    • Search Google Scholar
    • Export Citation
  • 31

    HuangWYangSShaoJLiYP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Frontiers in Bioscience: A Journal and Virtual Library 2007 3068–3092. (https://doi.org/10.2741/2296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    BjarnasonNHHenriksenEEAlexandersenPChristgauSHenriksenDBChristiansenC. Mechanism of circadian variation in bone resorption. Bone 2002 307–313. (https://doi.org/10.1016/s8756-3282(01)00662-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    PaldaniusPMIvaskaKKHoviPAnderssonSErikssonJGVäänänenKKajantieEMäkitieO. Total and carboxylated osteocalcin associate with insulin levels in young adults born with normal or very low birth weight. PLOS ONE 2013 e63036. (https://doi.org/10.1371/journal.pone.0063036)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    SchwetzVLerchbaumESchweighoferNHackerNTrummerOBorelOPieberTRChapurlatRObermayer-PietschB. Osteocalcin levels on oral glucose load in women being investigated for polycystic ovary syndrome. Endocrine Practice 2014 5–14. (https://doi.org/10.4158/EP13110.OR)

    • Search Google Scholar
    • Export Citation
  • 35

    PollockNKBernardPJGowerBAGundbergCMWengerKMisraSBassaliRWDavisCL. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with beta-cell function. Journal of Clinical Endocrinology and Metabolism 2011 E1092–E1099. (https://doi.org/10.1210/jc.2010-2731)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    GilbertLHeXFarmerPRubinJDrissiHvan WijnenAJLianJBSteinGSNanesMS. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2α A) is inhibited by tumor necrosis factor-α. Journal of Biological Chemistry 2002 2695–2701. (https://doi.org/10.1074/jbc.M106339200)

    • Search Google Scholar
    • Export Citation
  • 37

    MatzelleMMGallantMACondonKWWalshNCManningCASteinGSLianJBBurrDBGravalleseEM. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis and Rheumatism 2012 1540–1550. (https://doi.org/10.1002/art.33504)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    TakayanagiH. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nature Reviews. Immunology 2007 292–304. (https://doi.org/10.1038/nri2062)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    LianJBSteinGSvan WijnenAJSteinJLHassanMQGaurTZhangY. MicroRNA control of bone formation and homeostasis. Nature Reviews. Endocrinology 2012 212–227. (https://doi.org/10.1038/nrendo.2011.234)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    HassanMQTyeCESteinGSLianJB. Non-coding RNAs: epigenetic regulators of bone development and homeostasis. Bone 2015 746–756. (https://doi.org/10.1016/j.bone.2015.05.026)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    TrompeterHIDreesenJHermannEIwaniukKMHafnerMRenwickNTuschlTWernetP. MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestrictedsomatic stem cells from human cord blood. BMC Genomics 2013 111. (https://doi.org/10.1186/1471-2164-14-111)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    HulsmansMSinnaevePVan der SchuerenBMathieuCJanssensSHolvoetP. Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease. Journal of Clinical Endocrinology and Metabolism 2012 E1213–E1218. (https://doi.org/10.1210/jc.2012-1008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    ZhengHLiuJTycksenENunleyRMcAlindenA. MicroRNA-181a/b-1 over-expression enhances osteogenesis by modulating PTEN/PI3K/AKT signaling and mitochondrial metabolism. Bone 2019 92–102. (https://doi.org/10.1016/j.bone.2019.03.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    MizunoYTokuzawaYNinomiyaYYagiKYatsuka-KanesakiYSudaTFukudaTKatagiriTKondohYAmemiyaT, miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Letters 2009 2263–2268. (https://doi.org/10.1016/j.febslet.2009.06.006)

    • PubMed
    • Search Google Scholar
    • Export Citation