Brown adipose tissue activity is reduced in women with polycystic ovary syndrome

in European Journal of Endocrinology
Correspondence should be addressed to F M Reis; Email: fmreis@ufmg.br
Restricted access

Objective

To evaluate whether brown adipose tissue (BAT) activity is altered in women with polycystic ovary syndrome (PCOS), and whether BAT activity correlates with plasma levels of irisin, a myokine that can induce BAT formation.

Design

We performed a cross-sectional study including women with PCOS (n = 45) and a healthy control group (n = 25) matched by age and body mass index (BMI).

Methods

BAT activity was measured using 18F-FDG positron emission tomography-computed tomography (PET-CT) and plasma irisin levels were measured by a validated enzyme immunoassay.

Results

Total BAT activity was significantly reduced in women with PCOS (maximal standardized uptake value (SUVmax): median 7.4 g/mL, interquartile range 0.9–15.4) compared to controls (median 13.0 g/mL, interquartile range 4.7–18.4, P = 0.047). However, this difference was no longer significant after adjustment for waist circumference, a surrogate marker of central adiposity. In the PCOS group, BAT activity correlated negatively with BMI (Spearman’s r = −0.630, P = 0.000) and waist circumference (r = −0.592, P = 0.000) but not with plasma irisin levels.

Conclusions

BAT activity was reduced in women with PCOS possibly due to increased central adiposity. In PCOS women, BAT activity did not correlate with plasma irisin levels.

 

     European Society of Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 370 370 258
Full Text Views 32 32 24
PDF Downloads 24 24 17

Altmetrics

Figures

  • View in gallery

    Typical localization of brown fat activity with 18F-FDG PET-CT. (A) Maximal intensity projection showing diffuse uptake of 18F-FDG at different sites of brown fat. (B, C, D, E, F, G, H and I) Representative axial slices throughout a patient’s body showing sites of brown fat (red arrows). (B) Bilateral cervical regions; (C) bilateral cervico-thoracic transition; (D) bilateral cervico-thoracic transition, bilateral axillary regions; (E) bilateral axillary regions and anterior thoracic region; (F) mediastinal, bilateral axillary and bilateral intercostal regions; (G) thoracic-abdominal transition (close to esophagus); (H) right perirenal space; (I) intraabdominal region. A full colour version of this figure is available at https://doi.org/10.1530/EJE-19-0505

  • View in gallery

    Quantification of brown adipose tissue activity by 18F-FDG uptake in control (n = 25) and PCOS (n = 45) groups. The boxplots represent the medians and quartiles, with error bars indicating the 10th and 90th percentiles. The scatter plots in the upper panel show negative correlations between total BAT and BMI, waist circumference and plasma irisin. The lower plots compare BAT activity in the two groups at Region 1 (cervico-thoracic), Region 2 (axillary), Region 3 (thoracic), and Region 4 (abdominal). P values refer to Mann–Whitney test.

  • View in gallery

    Plasma irisin levels in control (n = 25) and PCOS (n = 45) groups and their correlation with BMI.

References

  • 1

    NichollsDGBernsonVSHeatonGM. The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. Experientia. Supplementum 1978 8993. (https://doi.org/10.1007/978-3-0348-5559-4_9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    RothwellNJStockMJ. Effects of age on diet-induced thermogenesis and brown adipose tissue metabolism in the rat. International Journal of Obesity 1983 583589.

    • Search Google Scholar
    • Export Citation
  • 3

    GestaSTsengYHKahnCR. Developmental origin of fat: tracking obesity to its source. Cell 2007 242256. (https://doi.org/10.1016/j.cell.2007.10.004)

  • 4

    van Marken LichtenbeltWDVanhommerigJWSmuldersNMDrossaertsJMKemerinkGJBouvyNDSchrauwenPTeuleGJ. Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 2009 15001508. (https://doi.org/10.1056/NEJMoa0808718)

    • Search Google Scholar
    • Export Citation
  • 5

    JungRTLesliePNichollsDGCunninghamSIslesTE. Energy expenditure in normal and diabetic man: the role of brown adipose tissue. Health Bulletin 1988 5562.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    CypessAMLehmanSWilliamsGTalIRodmanDGoldfineABKuoFCPalmerELTsengYHDoriaA Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine 2009 15091517. (https://doi.org/10.1056/NEJMoa0810780)

    • Search Google Scholar
    • Export Citation
  • 7

    VirtanenKALidellMEOravaJHeglindMWestergrenRNiemiTTaittonenMLaineJSavistoNJEnerbackS Functional brown adipose tissue in healthy adults. New England Journal of Medicine 2009 15181525. (https://doi.org/10.1056/NEJMoa0808949)

    • Search Google Scholar
    • Export Citation
  • 8

    SaitoMOkamatsu-OguraYMatsushitaMWatanabeKYoneshiroTNio-KobayashiJIwanagaTMiyagawaMKameyaTNakadaK High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009 15261531. (https://doi.org/10.2337/db09-0530)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    NedergaardJBengtssonTCannonB. Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology: Endocrinology and Metabolism 2007 E444E452. (https://doi.org/10.1152/ajpendo.00691.2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    HanyTFGharehpapaghEKamelEMBuckAHimms-HagenJvon SchulthessGK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. European Journal of Nuclear Medicine and Molecular Imaging 2002 13931398. (https://doi.org/10.1007/s00259-002-0902-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    RosenfieldRLEhrmannDA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine Reviews 2016 467520. (https://doi.org/10.1210/er.2015-1104)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    VillaJPratleyRE. Adipose tissue dysfunction in polycystic ovary syndrome. Current Diabetes Reports 2011 179184. (https://doi.org/10.1007/s11892-011-0189-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    YuanXHuTZhaoHHuangYYeRLinJZhangCZhangHWeiGZhouH Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. PNAS 2016 27082713. (https://doi.org/10.1073/pnas.1523236113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    PedersenBKFebbraioMA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology 2012 457465. (https://doi.org/10.1038/nrendo.2012.49)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    BostromPWuJJedrychowskiMPKordeAYeLLoJCRasbachKABostromEAChoiJHLongJZ A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012 463468. (https://doi.org/10.1038/nature10777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    AbaliRTemel YukselIYukselMABulutBImamogluMEmirdarVUnalFGuzelSCelikC. Implications of circulating irisin and Fabp4 levels in patients with polycystic ovary syndrome. Journal of Obstetrics and Gynaecology 2016 897901. (https://doi.org/10.3109/01443615.2016.1174200)

    • Search Google Scholar
    • Export Citation
  • 17

    PolyzosSAAnastasilakisADEfstathiadouZAMakrasPPerakakisNKountourasJMantzorosCS. Irisin in metabolic diseases. Endocrine 2018 260274. (https://doi.org/10.1007/s12020-017-1476-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    LiMYangMZhouXFangXHuWZhuWWangCLiuDLiSLiuH Elevated circulating levels of irisin and the effect of metformin treatment in women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2015 14851493. (https://doi.org/10.1210/jc.2014-2544)

    • Search Google Scholar
    • Export Citation
  • 19

    HuhJYPanagiotouGMougiosVBrinkoetterMVamviniMTSchneiderBEMantzorosCS. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism: Clinical and Experimental 2012 17251738. (https://doi.org/10.1016/j.metabol.2012.09.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Moreno-NavarreteJMOrtegaFSerranoMGuerraEPardoGTinahonesFRicartWFernandez-RealJM. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. Journal of Clinical Endocrinology and Metabolism 2013 E769E778. (https://doi.org/10.1210/jc.2012-2749)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    ZhangLFangXLiLLiuRZhangCLiuHTanMYangG. The association between circulating irisin levels and different phenotypes of polycystic ovary syndrome. Journal of Endocrinological Investigation 2018 14011407. (https://doi.org/10.1007/s40618-018-0902-4)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    CaiXQiuSLiLZugelMSteinackerJMSchumannU. Circulating irisin in patients with polycystic ovary syndrome: a meta-analysis. Reproductive Biomedicine Online 2018 172180. (https://doi.org/10.1016/j.rbmo.2017.10.114)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    ChangCLHuangSYSoongYKChengPJWangCJLiangIT. Circulating irisin and glucose-dependent insulinotropic peptide are associated with the development of polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2014 E2539E2548. (https://doi.org/10.1210/jc.2014-1180)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    CostanzaMC. Matching. Preventive Medicine 1995 425433. (https://doi.org/10.1006/pmed.1995.1069)

  • 25

    Rotterdam EA-SPCWG. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility 2004 1925.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    CraigCLMarshallALSjostromMBaumanAEBoothMLAinsworthBEPrattMEkelundUYngveASallisJF International physical activity questionnaire: 12-country reliability and validity. Medicine and Science in Sports and Exercise 2003 13811395. (https://doi.org/10.1249/01.MSS.0000078924.61453.FB)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    MacfarlaneDJLeeCCHoEYChanKLChanD. Convergent validity of six methods to assess physical activity in daily life. Journal of Applied Physiology 2006 13281334. (https://doi.org/10.1152/japplphysiol.00336.2006)

    • Search Google Scholar
    • Export Citation
  • 28

    ColpaniVOppermannKSpritzerPM. Causes of death and associated risk factors among climacteric women from Southern Brazil: a population based-study. BMC Public Health 2014 194. (https://doi.org/10.1186/1471-2458-14-194)

    • Search Google Scholar
    • Export Citation
  • 29

    BastosCAOppermannKFuchsSCDonatoGBSpritzerPM. Determinants of ovarian volume in pre-, menopausal transition, and post-menopausal women: a population-based study. Maturitas 2006 405412. (https://doi.org/10.1016/j.maturitas.2005.07.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    LauriaPBDel PuertoHLReisAMCandidoALReisFM. Low plasma atrial natriuretic peptide: a new piece in the puzzle of polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2013 48824889. (https://doi.org/10.1210/jc.2013-2141)

    • Search Google Scholar
    • Export Citation
  • 31

    WiltgenDBenedettoIGMastellaLSSpritzerPM. Lipid accumulation product index: a reliable marker of cardiovascular risk in polycystic ovary syndrome. Human Reproduction 2009 17261731. (https://doi.org/10.1093/humrep/dep072)

    • Search Google Scholar
    • Export Citation
  • 32

    Martinez-TellezBSanchez-DelgadoGGarcia-RiveroYAlcantaraJMAMartinez-AvilaWDMunoz-HernandezMVOlzaJBoonMRRensenPCNLlamas-ElviraJM A new personalized cooling protocol to activate brown adipose tissue in young adults. Frontiers in Physiology 2017 863.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Engineers ASoHRaA-C. 2009 ASHRAE Handbook - Fundamentals. ASHRAE2009.

  • 34

    ToolBox E. Clo - Clothing and Thermal Insulation2004.

  • 35

    SugawaraYZasadnyKRNeuhoffAWWahlRL. Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology 1999 521525. (https://doi.org/10.1148/radiology.213.2.r99nv37521)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    PourhoseingholiMABaghestaniARVahediM. How to control confounding effects by statistical analysis. Gastroenterology and Hepatology from Bed to Bench 2012 7983.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    DekkersOM. Why not to (over)emphasize statistical significance. European Journal of Endocrinology 2019 181 E1E2. (https://doi.org/10.1530/EJE-19-0531)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    ShorakaeSJonaEde CourtenBLambertGWLambertEAPhillipsSEClarkeIJTeedeHJHenryBA. Brown adipose tissue thermogenesis in polycystic ovary syndrome. Clinical Endocrinology 2019 425432. (https://doi.org/10.1111/cen.13913)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    FranssensBTHoogduinHLeinerTvan der GraafYVisserenFLJ. Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. Journal of Magnetic Resonance Imaging 2017 497504. (https://doi.org/10.1002/jmri.25594)

    • Search Google Scholar
    • Export Citation
  • 40

    WangQZhangMNingGGuWSuTXuMLiBWangW. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS ONE 2011 e21006. (https://doi.org/10.1371/journal.pone.0021006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    BarberTMGoldingSJAlveyCWassJAKarpeFFranksSMcCarthyMI. Global adiposity rather than abnormal regional fat distribution characterizes women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2008 9991004. (https://doi.org/10.1210/jc.2007-2117)

    • Search Google Scholar
    • Export Citation
  • 42

    VillarroyaFCereijoRGavalda-NavarroAVillarroyaJGiraltM. Inflammation of brown/beige adipose tissues in obesity and metabolic disease. Journal of Internal Medicine 2018 284 492504. (https://doi.org/10.1111/joim.12803)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    SpritzerPMLeckeSBSatlerFMorschDM. Adipose tissue dysfunction, adipokines, and low-grade chronic inflammation in polycystic ovary syndrome. Reproduction 2015 R219R227. (https://doi.org/10.1530/REP-14-0435)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    PukajloKLaczmanskiŁKolackovKKuliczkowska-PlaksejJBolanowskiMMilewiczADaroszewskiJ. Irisin plasma concentration in PCOS and healthy subjects is related to body fat content and android fat distribution. Gynecological Endocrinology 2015 907911. (https://doi.org/10.3109/09513590.2015.1065482)

    • Search Google Scholar
    • Export Citation
  • 45

    WangCZhangXYSunYHouXGChenL. Higher circulating irisin levels in patients with polycystic ovary syndrome: a meta-analysis. Gynecological Endocrinology 2018 290293. (https://doi.org/10.1080/09513590.2017.1393065)

    • Search Google Scholar
    • Export Citation
  • 46

    Couto AlvesAValcarcelBMakinenVPMorin-PapunenLSebertSKangasAJSoininenPDasSDe IorioMCoinL Metabolic profiling of polycystic ovary syndrome reveals interactions with abdominal obesity. International Journal of Obesity 2017 13311340. (https://doi.org/10.1038/ijo.2017.126)

    • Search Google Scholar
    • Export Citation

PubMed

Google Scholar