The diurnal variation of bone formation is attenuated in adult patients with type 2 diabetes

in European Journal of Endocrinology
Correspondence should be addressed to K Hygum; Email: katrhygu@rm.dk
Restricted access

Objective

Bone turnover has a diurnal variation influenced by food intake, incretin hormones, the sympathetic nervous system and osteocyte function. The aim of the study was to compare diurnal variation in bone turnover in patients with diabetes and controls.

Design

A clinical 24-h study with patients with type 1 diabetes (n = 5), patients with type 2 diabetes (n = 5) and controls (n = 5).

Methods

Inclusion criterion: age >50 years. Exclusion criteria: diseases/medication that affect bone metabolism or recent use of incretin-based drugs. We drew blood samples hourly during the day and every 3 h during the night. We served an identical diet on all study days. We used repeated-measures one-way ANOVA to compare the levels of the investigated markers, and we quantified the effect of time by comparing group mean standard deviations.

Results

The bone formation marker procollagen type 1 N-terminal propeptide showed a significant interaction between time and group (P = 0.01), and the mean standard deviation was lower in patients with type 2 diabetes compared with controls (P = 0.04) and patients with type 1 diabetes (P = 0.02). Other markers of bone formation and resorption showed significant effect of time. Levels of glucagon-like peptide-2, glucose-dependent insulinotropic peptide and sclerostin only showed significant effect of time (all P values 0.01), but levels of sclerostin tended to being highest in type 2 diabetes and lowest in controls.

Conclusions

The diurnal variation in bone formation is attenuated in patients with type 2 diabetes. This is not explained by changes in incretin hormone levels, but possibly mediated by sclerostin.

 

     European Society of Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 422 422 154
Full Text Views 63 63 20
PDF Downloads 41 41 17

Altmetrics

Figures

  • View in gallery

    (A) Plasma (P)-procollagen type 1 N-terminal propeptide (P1NP), (B) P-osteocalcin, (C) P-bone alkaline phosphatase (BAP) and (D) P-collagen I cross-linked C-terminal telopeptide (CTX) by group (control, type 1 diabetes (T1D), type 2 diabetes (T2D)) and time (repeated-measures ANOVA). Error bars present the standard error of the mean (s.e.m.). Time of day (24 h) is actual clock time.

  • View in gallery

    (A) P-glucose, (B) P-glucagon-like peptide-2 (GLP-2) and (C) P-glucose-dependent insulinotropic peptide (GIP) by group (control, type 1 diabetes (T1D), type 2 diabetes (T2D)) and time (repeated-measures ANOVA). Error bars present the standard error of the mean (s.e.m.). Time of day (24 h) is actual clock time.

  • View in gallery

    (A) P-sclerostin and (B) P-parathyroid hormone (PTH) by group (control, type 1 diabetes (T1D), type 2 diabetes (T2D)) and time (repeated-measures ANOVA). Error bars present the standard error of the mean (s.e.m.). Time of day (24 h) is actual clock time.

References

  • 1

    EriksenEFGundersenHJMelsenFMosekildeL. Reconstruction of the formative site in iliac trabecular bone in 20 normal individuals employing a kinetic model for matrix and mineral apposition. Metabolic Bone Disease and Related Research 1984 5 . (https://doi.org/10.1016/0221-8747(84)90066-3)

    • Search Google Scholar
    • Export Citation
  • 2

    EriksenEFMelsenFMosekildeL. Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorption in 20 normal individuals. Metabolic Bone Disease and Related Research 1984 5 . (https://doi.org/10.1016/0221-8747(84)90065-1)

    • Search Google Scholar
    • Export Citation
  • 3

    SchlemmerAHassagerCJensenSBChristiansenC. Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. Journal of Clinical Endocrinology and Metabolism 1992 74 . (https://doi.org/10.1210/jcem.74.3.1740479)

    • Search Google Scholar
    • Export Citation
  • 4

    VestergaardP. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes – a meta-analysis. Osteoporosis International 2007 18 . (https://doi.org/10.1007/s00198-006-0253-4)

    • Search Google Scholar
    • Export Citation
  • 5

    LeslieWDRubinMRSchwartzAVKanisJA. Type 2 diabetes and bone. Journal of Bone and Mineral Research 2012 27 .

  • 6

    JanghorbaniMVan DamRMWillettWCHuFB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. American Journal of Epidemiology 2007 166 . (https://doi.org/10.1093/aje/kwm106)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    HygumKStarup-LindeJHarslofTVestergaardPLangdahlBL. MECHANISMS IN ENDOCRINOLOGY: Diabetes mellitus, a state of low bone turnover – a systematic review and meta-analysis. European Journal of Endocrinology 2017 176 R137R157. (https://doi.org/10.1530/EJE-16-0652)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    FuLPatelMSBradleyAWagnerEFKarsentyG. The molecular clock mediates leptin-regulated bone formation. Cell 2005 122 . (https://doi.org/10.1016/j.cell.2005.06.028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    ClowesJAHannonRAYapTSHoyleNRBlumsohnAEastellR. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 2002 30 . (https://doi.org/10.1016/S8756-3282(02)00728-7)

    • Search Google Scholar
    • Export Citation
  • 10

    BjarnasonNHHenriksenEEAlexandersenPChristgauSHenriksenDBChristiansenC. Mechanism of circadian variation in bone resorption. Bone 2002 30 . (https://doi.org/10.1016/S8756-3282(01)00662-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Starup-LindeJLykkeboeSGregersenSHaugeEMLangdahlBLHandbergAVestergaardP. Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone 2016 83 . (https://doi.org/10.1016/j.bone.2015.11.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    WijenayakaARKogawaMLimHPBonewaldLFFindlayDMAtkinsGJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS ONE 2011 6 e25900. (https://doi.org/10.1371/journal.pone.0025900)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    YavropoulouMPYovosJG. Incretins and bone: evolving concepts in nutrient-dependent regulation of bone turnover. Hormones 2013 12 . (https://doi.org/10.14310/horm.2002.1405)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    FærchKTorekovSSVistisenDJohansenNBWitteDRJonssonAPedersenOHansenTLauritzenTSandbækA GLP-1 response to oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: the ADDITION-PRO study. Diabetes 2015 64 . (https://doi.org/10.2337/db14-1751)

    • Search Google Scholar
    • Export Citation
  • 15

    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014 37 (Supplement 1) S81S90. (https://doi.org/10.2337/dc14-S081)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    OrskovCHolstJJKnuhtsenSBaldisseraFGPoulsenSSNielsenOV. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 1986 119 . (https://doi.org/10.1210/endo-119-4-1467)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    LindgrenOCarrRDDeaconCFHolstJJPaciniGMariAAhrenB. Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. Journal of Clinical Endocrinology and Metabolism 2011 96 . (https://doi.org/10.1210/jc.2011-0266)

    • Search Google Scholar
    • Export Citation
  • 18

    HartmannBJohnsenAHOrskovCAdelhorstKThimLHolstJJ. Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 2000 21 . (https://doi.org/10.1016/S0196-9781(99)00176-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    HenriksenDBAlexandersenPBjarnasonNHVilsbollTHartmannBHenriksenEEByrjalsenIKrarupTHolstJJChristiansenC. Role of gastrointestinal hormones in postprandial reduction of bone resorption. Journal of Bone and Mineral Research 2003 18 . (https://doi.org/10.1359/jbmr.2003.18.12.2180)

    • Search Google Scholar
    • Export Citation
  • 20

    PurnamasariDPuspitasariMDSetiyohadiBNugrohoPIsbagioH. Low bone turnover in premenopausal women with type 2 diabetes mellitus as an early process of diabetes-associated bone alterations: a cross-sectional study. BMC Endocrine Disorders 2017 17 72. (https://doi.org/10.1186/s12902-017-0224-0)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    MitchellAFallTMelhusHWolkAMichaelssonKBybergL. Type 2 diabetes in relation to hip bone density, area, and bone turnover in Swedish men and women: a cross-sectional study. Calcified Tissue International 2018 103 . (https://doi.org/10.1007/s00223-018-0446-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    PosenSGrunsteinHS. Turnover rate of skeletal alkaline phosphatase in humans. Clinical Chemistry 1982 28 .

  • 23

    ChailurkitLOChanprasertyothinSRajatanavinROngphiphadhanakulB. Reduced attenuation of bone resorption after oral glucose in type 2 diabetes. Clinical Endocrinology 2008 68 . (https://doi.org/10.1111/j.1365-2265.2007.03159.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Fuglsang-NielsenRStarup-LindeJGregersenSVestergaardP. The effect of meals on bone turnover – a systematic review with focus on diabetic bone disease. Expert Review of Endocrinology and Metabolism 2018 13 . (https://doi.org/10.1080/17446651.2018.1518131)

    • Search Google Scholar
    • Export Citation
  • 25

    ClowesJAAllenHCPrentisDMEastellRBlumsohnA. Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. Journal of Clinical Endocrinology and Metabolism 2003 88 . (https://doi.org/10.1210/jc.2002-021447)

    • Search Google Scholar
    • Export Citation
  • 26

    Westberg-RasmussenSStarup-LindeJHermansenKHolstJJHartmannBVestergaardPGregersenS. Differential impact of glucose administered intravenously or orally on bone turnover markers in healthy male subjects. Bone 2017 97 . (https://doi.org/10.1016/j.bone.2017.01.027)

    • Search Google Scholar
    • Export Citation
  • 27

    ElliottRMMorganLMTredgerJADeaconSWrightJMarksV. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. Journal of Endocrinology 1993 138 . (https://doi.org/10.1677/joe.0.1380159)

    • Search Google Scholar
    • Export Citation
  • 28

    OrskovCWettergrenAHolstJJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scandinavian Journal of Gastroenterology 1996 31 . (https://doi.org/10.3109/00365529609009147)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Toft-NielsenMBDamholtMBMadsbadSHilstedLMHughesTEMichelsenBKHolstJJ. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. Journal of Clinical Endocrinology and Metabolism 2001 86 . (https://doi.org/10.1210/jcem.86.8.7750)

    • Search Google Scholar
    • Export Citation
  • 30

    MuscelliEMariACasolaroACamastraSSeghieriGGastaldelliAHolstJJFerranniniE. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 2008 57 . (https://doi.org/10.2337/db07-1315)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    VollmerKHolstJJBallerBEllrichmannMNauckMASchmidtWEMeierJJ. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 2008 57 . (https://doi.org/10.2337/db07-1124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    GreenbaumCJPrigeonRLD'AlessioDA. Impaired beta-cell function, incretin effect, and glucagon suppression in patients with type 1 diabetes who have normal fasting glucose. Diabetes 2002 51 . (https://doi.org/10.2337/diabetes.51.4.951)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    VilsbollTKrarupTSonneJMadsbadSVolundAJuulAGHolstJJ. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 2003 88 . (https://doi.org/10.1210/jc.2002-021873)

    • Search Google Scholar
    • Export Citation
  • 34

    LugariRDell’AnnaCUgolottiDDei CasABarilliALZandomeneghiRMaraniBIottiMOrlandiniAGnudiA. Effect of nutrient ingestion on glucagon-like peptide 1 (7–36 amide) secretion in human type 1 and type 2 diabetes. Hormone and Metabolic Research 2000 32 .

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    HenriksenDBAlexandersenPHartmannBAdrianCLByrjalsenIBoneHGHolstJJChristiansenC. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone 2009 45 . (https://doi.org/10.1016/j.bone.2009.07.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    HenriksenDBAlexandersenPByrjalsenIHartmannBBoneHGChristiansenCHolstJJ. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone 2004 34 . (https://doi.org/10.1016/j.bone.2003.09.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    SwansonCSheaSAWolfePMarkwardtSCainSWMunchMCzeislerCAOrwollESBuxtonOM. 24-hour profile of serum sclerostin and its association with bone biomarkers in men. Osteoporosis International 2017 28 . (https://doi.org/10.1007/s00198-017-4162-5)

    • Search Google Scholar
    • Export Citation
  • 38

    KangJBoonanantanasarnKBaekKWooKMRyooHMBaekJHKimGS. Hyperglycemia increases the expression levels of sclerostin in a reactive oxygen species- and tumor necrosis factor-alpha-dependent manner. Journal of Periodontal and Implant Science 2015 45 . (https://doi.org/10.5051/jpis.2015.45.3.101)

    • Search Google Scholar
    • Export Citation
  • 39

    TanakaKYamaguchiTKanazawaISugimotoT. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochemical and Biophysical Research Communications 2015 461 . (https://doi.org/10.1016/j.bbrc.2015.02.091)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    HapidinHOthmanFSoelaimanINShuidANMohamedN. Effects of nicotine administration and nicotine cessation on bone histomorphometry and bone biomarkers in Sprague-Dawley male rats. Calcified Tissue International 2011 88 . (https://doi.org/10.1007/s00223-010-9426-4)

    • Search Google Scholar
    • Export Citation
  • 41

    GombosGCBajszVPekESchmidtBSioEMolicsBBetlehemJ. Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskeletal Disorders 2016 17 254. (https://doi.org/10.1186/s12891-016-1109-5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    ClowesJARobinsonRTHellerSREastellRBlumsohnA. Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies. Journal of Clinical Endocrinology and Metabolism 2002 87 . (https://doi.org/10.1210/jcem.87.7.8660)

    • Search Google Scholar
    • Export Citation

PubMed

Google Scholar