Effects of 6-month vitamin D supplementation on insulin sensitivity and secretion: a randomised, placebo-controlled trial

in European Journal of Endocrinology
Correspondence should be addressed to C Gagnon; Email: claudia.gagnon@crchudequebec.ulaval.ca
Restricted access

Objective

To determine whether vitamin D3 supplementation improves insulin sensitivity, using the hyperinsulinemic-euglycemic clamp.

Design

This single-centre, double-blind, placebo-controlled trial randomised 96 participants at high risk of diabetes or with newly diagnosed type 2 diabetes to vitamin D3 5000 IU daily or placebo for 6 months.

Methods

We assessed at baseline and 6 months: (1) primary aim: peripheral insulin sensitivity (M-value using a 2-h hyperinsulinemic-euglycemic clamp); (2) secondary aims: other insulin sensitivity (HOMA2%S, Matsuda) and insulin secretion (insulinogenic index, C-peptide area under the curve, HOMA2-B) indices using a 2-h oral glucose tolerance test (OGTT); β-cell function (disposition index: M-value × insulinogenic index); fasting and 2-h glucose post OGTT; HbA1c; anthropometry.

Results

Baseline characteristics were similar between groups (% or mean ± s.d.): women 38.5%; age 58.7 ± 9.4 years; BMI 32.2 ± 4.1 kg/m2; prediabetes 35.8%; diabetes 20.0%; 25-hydroxyvitamin D (25(OH)D) 51.1 ± 14.2 nmol/L. At 6 months, mean 25(OH)D reached 127.6 ± 26.3 nmol/L and 51.8 ± 16.5 nmol/L in the treatment and placebo groups, respectively (P < 0.001). A beneficial effect of vitamin D3 compared with placebo was observed on M-value (mean change (95% CI): 0.92 (0.24–1.59) vs −0.03 (−0.73 to 0.67); P = 0.009) and disposition index (mean change (95% CI): 267.0 (−343.4 to 877.4) vs −55.5 (−696.3 to 585.3); P = 0.039) after 6 months. No effect was seen on other outcomes.

Conclusions

In individuals at high risk of diabetes or with newly diagnosed type 2 diabetes, vitamin D supplementation for 6 months significantly increased peripheral insulin sensitivity and β-cell function, suggesting that it may slow metabolic deterioration in this population.

 

     European Society of Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 534 534 534
Full Text Views 47 47 47
PDF Downloads 41 41 41

Altmetrics

Figures

  • View in gallery

    Flowchart showing participant enrolment, allocation and analysis.

  • View in gallery

    Mean (SD) serum 25-hydroxyvitamin D concentrations at baseline and after 3 and 6 months in the vitamin D and placebo groups. *P < 0.001 for the difference between groups.

References

  • 1

    KayaniyilSViethRRetnakaranRKnightJAQiYGersteinHCPerkinsBAHarrisSBZinmanBHanleyAJ. Association of vitamin D with insulin resistance and beta-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care 2010 33 13791381. (https://doi.org/10.2337/dc09-2321)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    GagnonCLuZXMaglianoDJDunstanDWShawJEZimmetPZSikarisKGranthamNEbelingPRDalyRM. Serum 25-hydroxyvitamin D, calcium intake, and risk of type 2 diabetes after 5 years: results from a national, population-based prospective study (the Australian Diabetes, Obesity and Lifestyle study). Diabetes Care 2011 34 11331138. (https://doi.org/10.2337/dc10-2167)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    HolickMF. Vitamin D deficiency. New England Journal of Medicine 2007 357 266281. (https://doi.org/10.1056/NEJMra070553)

  • 4

    Krul-PoelYHTer WeeMMLipsPSimsekS. MANAGEMENT of ENDOCRINE DISEASE: The effect of vitamin D supplementation on glycaemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. European Journal of Endocrinology 2017 176 R1R14. (https://doi.org/10.1530/EJE-16-0391)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    SeidaJCMitriJColmersINMajumdarSRDavidsonMBEdwardsALHanleyDAPittasAGTjosvoldLJohnsonJA. Clinical review: effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes: a systematic review and meta-analysis. Journal of Clinical Endocrinology and Metabolism 2014 99 35513560. (https://doi.org/10.1210/jc.2014-2136)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    FliserDStefanskiAFranekEFodePGudarziARitzE. No effect of calcitriol on insulin-mediated glucose uptake in healthy subjects. European Journal of Clinical Investigation 1997 27 629633. (https://doi.org/10.1046/j.1365-2362.1997.1520699.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    SimhaVMahmoodMAnsariMSpellmanCWShahP. Effect of vitamin D replacement on insulin sensitivity in subjects with vitamin D deficiency. Journal of Investigative Medicine 2012 60 12141218. (https://doi.org/10.2310/JIM.0b013e3182747c06)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    KampmannUMosekildeLJuhlCMollerNChristensenBRejnmarkLWambergLOrskovL. Effects of 12 weeks high dose vitamin D3 treatment on insulin sensitivity, beta cell function, and metabolic markers in patients with type 2 diabetes and vitamin D insufficiency – a double-blind, randomized, placebo-controlled trial. Metabolism: Clinical and Experimental 2014 63 11151124. (https://doi.org/10.1016/j.metabol.2014.06.008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    GulsethHLWiumCAngelKEriksenEFBirkelandKI. Effects of vitamin D supplementation on insulin sensitivity and insulin secretion in subjects with type 2 diabetes and vitamin D deficiency: a randomized controlled trial. Diabetes Care 2017 40 872878. (https://doi.org/10.2337/dc16-2302)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    MousaANaderpoorNde CourtenMPTeedeHKellowNWalkerKScraggRde CourtenB. Vitamin D supplementation has no effect on insulin sensitivity or secretion in vitamin D-deficient, overweight or obese adults: a randomized placebo-controlled trial. American Journal of Clinical Nutrition 2017 105 13721381. (https://doi.org/10.3945/ajcn.117.152736)

    • Search Google Scholar
    • Export Citation
  • 11

    PocockSJSimonR. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics 1975 31 103115. (https://doi.org/10.2307/2529712)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    MoherDHopewellSSchulzKFMontoriVGotzschePCDevereauxPJElbourneDEggerMAltmanDG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 2010 340 c869. (https://doi.org/10.1136/bmj.c869)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    GagnonCDalyRMCarpentierALuZXShore-LorentiCSikarisKJeanSEbelingPR. Effects of combined calcium and vitamin D supplementation on insulin secretion, insulin sensitivity and beta-cell function in multi-ethnic vitamin D-deficient adults at risk for type 2 diabetes: a pilot randomized, placebo-controlled trial. PLoS ONE 2014 9 e109607. (https://doi.org/10.1371/journal.pone.0109607)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    WackerMHolickMF. Sunlight and vitamin D: a global perspective for health. Dermato-Endocrinology 2013 5 51108. (https://doi.org/10.4161/derm.24494)

  • 15

    LabonteCyrABaril-GravelLRoyerMMLamarcheB. Validity and reproducibility of a web-based, self-administered food frequency questionnaire. European Journal of Clinical Nutrition 2012 66 166173. (https://doi.org/10.1038/ejcn.2011.163)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    von HurstPRStonehouseWCoadJ. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient – a randomised, placebo-controlled trial. British Journal of Nutrition 2010 103 549555. (https://doi.org/10.1017/S0007114509992017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    SawilowskySS. New effect size rules of thumb. Journal of Modern Applied Statistical Methods 2009 8 597599. (https://doi.org/10.22237/jmasm/1257035100)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    GrimnesGFigenschauYAlmasBJordeR. Vitamin D, insulin secretion, sensitivity, and lipids: results from a case-control study and a randomized controlled trial using hyperglycemic clamp technique. Diabetes 2011 60 27482757. (https://doi.org/10.2337/db11-0650)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    WagnerHAlvarssonMMannheimerBDegerbladMOstensonCG. No effect of high-dose vitamin D treatment on beta-cell function, insulin sensitivity, or glucose homeostasis in subjects with abnormal glucose tolerance: a randomized clinical trial. Diabetes Care 2016 39 345352. (https://doi.org/10.2337/dc15-1057)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    DeFronzoRATobinJDAndresR. Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology 1979 237 E214E223. (https://doi.org/10.1152/ajpendo.1979.237.3.E214)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    PoolsupNSuksomboonNPlordplongN. Effect of vitamin D supplementation on insulin resistance and glycaemic control in prediabetes: a systematic review and meta-analysis. Diabetic Medicine 2016 33 290299. (https://doi.org/10.1111/dme.12893)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    DavidsonMBDuranPLeeMLFriedmanTC. High-dose vitamin D supplementation in people with prediabetes and hypovitaminosis D. Diabetes Care 2013 36 260266. (https://doi.org/10.2337/dc12-1204)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Moreira-LucasTSDuncanAMRabasa-LhoretRViethRGibbsALBadawiAWoleverTM. Effect of vitamin D supplementation on oral glucose tolerance in individuals with low vitamin D status and increased risk for developing type 2 diabetes (EVIDENCE): a double-blind, randomized, placebo-controlled clinical trial. Diabetes Obesity and Metabolism 2017 19 133141. (https://doi.org/10.1111/dom.12794)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    OosterwerffMMEekhoffEMVan SchoorNMBoekeAJNanayakkaraPMeijnenRKnolDLKramerMHLipsP. Effect of moderate-dose vitamin D supplementation on insulin sensitivity in vitamin D-deficient non-Western immigrants in the Netherlands: a randomized placebo-controlled trial. American Journal of Clinical Nutrition 2014 100 152160. (https://doi.org/10.3945/ajcn.113.069260)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    SollidSTHutchinsonMYSFuskevagOMFigenschauYJoakimsenRMSchirmerHNjolstadISvartbergJKamychevaEJordeR. No effect of high-dose vitamin D supplementation on glycemic status or cardiovascular risk factors in subjects with prediabetes. Diabetes Care 2014 37 21232131. (https://doi.org/10.2337/dc14-0218)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    HoseiniSAAminorroayaAIrajBAminiM. The effects of oral vitamin D on insulin resistance in pre-diabetic patients. Journal of Research in Medical Sciences 2013 18 4751.

    • Search Google Scholar
    • Export Citation
  • 27

    TuomainenTPVirtanenJKVoutilainenSNurmiTMursuJde MelloVDSchwabUHakumakiMPulkkiKUusitupaM. Glucose metabolism effects of vitamin D in prediabetes: the VitDmet randomized placebo-controlled supplementation study. Journal of Diabetes Research 2015 2015 672653. (https://doi.org/10.1155/2015/672653)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    ForoozanfardFTalebiMSamimiMMehrabiSBadehnooshBJamilianMMaktabiMAsemiZ. Effect of two different doses of vitamin D supplementation on metabolic profiles of insulin-resistant patients with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Hormone and Metabolic Research 2017 49 612617. (https://doi.org/10.1055/s-0043-112346)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    MatsudaMDeFronzoRA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999 22 14621470. (https://doi.org/10.2337/diacare.22.9.1462)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Rabasa-LhoretRLavilleM. How to measure insulin sensitivity in clinical practice? Diabetes and Metabolism 2001 27 201208.

  • 31

    DeFronzoRATripathyD. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009 32 (Supplement 2) S157S163. (https://doi.org/10.2337/dc09-S302)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    AminSNHusseinUKYassaHDHassanSSRashedLA. Synergistic actions of vitamin D and metformin on skeletal muscles and insulin resistance of type 2 diabetic rats. Journal of Cellular Physiology 2018 233 57685779. (https://doi.org/10.1002/jcp.26300)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    GilsanzVKremerAMoAOWrenTAKremerR. Vitamin D status and its relation to muscle mass and muscle fat in young women. Journal of Clinical Endocrinology and Metabolism 2010 95 15951601. (https://doi.org/10.1210/jc.2009-2309)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    MannaPAchariAEJainSK. Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Archives of Biochemistry and Biophysics 2017 615 2234. (https://doi.org/10.1016/j.abb.2017.01.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    CastroAJFredericoMJCazarolliLHBretanhaLCTavares LdeCBuss ZdaSDutraMFde SouzaAZPizzolattiMGSilvaFR. Betulinic acid and 1,25(OH)(2) vitamin D(3) share intracellular signal transduction in glucose homeostasis in soleus muscle. International Journal of Biochemistry and Cell Biology 2014 48 1827. (https://doi.org/10.1016/j.biocel.2013.11.020)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Shab-BidarSNeyestaniTRDjazayeryAEshraghianMRHoushiarradAKalayiAShariatzadehNKhalajiNGharaviA. Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes. Diabetes/Metabolism Research and Reviews 2012 28 424430. (https://doi.org/10.1002/dmrr.2290)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    RoyPNadeauMValleMBellmannKMaretteATchernofAGagnonC. Vitamin D reduces LPS-induced cytokine release in omental adipose tissue of women but not men. Steroids 2015 104 6571. (https://doi.org/10.1016/j.steroids.2015.08.014)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    UtzschneiderKMPrigeonRLFaulenbachMVTongJCarrDBBoykoEJLeonettiDLMcNeelyMJFujimotoWYKahnSE. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 2009 32 335341. (https://doi.org/10.2337/dc08-1478)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    DefronzoRATripathyDSchwenkeDCBanerjiMBrayGABuchananTAClementSCHenryRRKitabchiAEMudaliarS Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk. Diabetes Care 2013 36 36073612. (https://doi.org/10.2337/dc13-0520)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Neelankal JohnAJiangFX. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic beta-cells. Journal of Diabetes and its Complications 2018 32 429443. (https://doi.org/10.1016/j.jdiacomp.2017.12.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    KajikawaMIshidaHFujimotoSMukaiENishimuraMFujitaJTsuuraYOkamotoYNormanAWSeinoY. An insulinotropic effect of vitamin D analog with increasing intracellular Ca2+ concentration in pancreatic beta-cells through nongenomic signal transduction. Endocrinology 1999 140 47064712. (https://doi.org/10.1210/endo.140.10.7025)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    JordeRSollidSTSvartbergJSchirmerHJoakimsenRMNjolstadIFuskevagOMFigenschauYHutchinsonMY. Vitamin D 20,000 IU per week for five years does not prevent progression from prediabetes to diabetes. Journal of Clinical Endocrinology and Metabolism 2016 101 16471655. (https://doi.org/10.1210/jc.2015-4013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    PittasAGDawson-HughesBSheehanPWareJHKnowlerWCArodaVRBrodskyICegliaLChadhaCChatterjeeR Vitamin D supplementation and prevention of Type 2 diabetes. New England Journal of Medicine 2019 [epub]. (https://doi.org/10.1056/NEJMoa1900906)

    • Search Google Scholar
    • Export Citation

PubMed

Google Scholar