Identifying a disease-specific renin–angiotensin–aldosterone system fingerprint in patients with primary adrenal insufficiency

in European Journal of Endocrinology
Correspondence should be addressed to M Krebs; Email: michael.krebs@meduniwien.ac.at
Restricted access

Background

In patients suffering from primary adrenal insufficiency (AI) mortality is increased despite adequate glucocorticoid (GC) and mineralocorticoid (MC) replacement therapy, mainly due to an increased cardiovascular risk. Since activation of the renin–angiotensin–aldosterone system (RAAS) plays an important role in the modulation of cardiovascular risk factors, we performed in-depth characterization of the RAAS activity.

Methods

Eight patients with primary AI (female = 5; age: 56 ± 21 years; BMI: 22.8 ± 2 kg/m2; mean blood pressure: 140/83 mmHg; hydrocortisone dose: 21.9 ± 5 mg/day; fludrocortisone dose: 0.061 ± 0.03 mg/day) and eight matched healthy volunteers (female = 5; age: 52 ± 21 years; BMI: 25.2 ± 4 kg/m2; mean blood pressure:135/84 mmHg) were included in a cross-sectional case–control study. Angiotensin metabolite profiles (RAS-fingerprints) were performed by liquid chromatography mass spectrometry.

Results

In patients suffering from primary AI, RAAS activity was highly increased with elevated concentrations of renin concentration (P = 0.027), angiotensin (Ang) I (P = 0.022), Ang II (P = 0.032), Ang 1-7 and Ang 1-5. As expected, aldosterone was not detectable in the majority of AI patients, resulting in a profoundly suppressed aldosterone-to-AngII ratio (AA2 ratio, P = 0.003) compared to controls. PRA-S, the angiotensin-based marker for plasma renin activity, correlated with plasma renin activity (r = 0.983; P < 0.01) and plasma renin concentration (r = 0.985; P < 0.001) and was significantly increased in AI patients.

Conclusions

AI is associated with a unique RAAS profile characterized by the absence of aldosterone despite strongly elevated levels of angiotensin metabolites, including the potent vasoconstrictor AngII. Despite state-of-the-art hormone replacement therapy, the RAAS remains hyperactivated. The contribution of Ang II in cardiovascular diseases in AI patients as well as a potential role for providing useful complementary information at diagnosis and follow up of AI should be investigated in future trials.

 

     European Society of Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 174 174 100
Full Text Views 35 35 21
PDF Downloads 31 31 21

Altmetrics

Figures

  • View in gallery

    RAS fingerprint in healthy controls (A) and patients with primary adrenal insufficiency (B). The sizes of spheres and the numbers beside them represent absolute concentrations of angiotensin metabolites (pmol/L, median value) analyzed by mass spectrometry. ACE, angiotensin-converting enzyme; Aldo, aldosterone; Ang, angiotensin; AP, aminopeptidase; AT1R, angiotensin 2 type 1 receptor; NEP, neutral endopeptidase.

  • View in gallery

    Correlation analysis of PRA-S with (A) classic plasma renin activity (PRA) and (B) plasma renin concentration (PRC) in patients with AI and healthy controls.

References

  • 1

    GrossmanABJohanssonGQuinklerMZelissenP. Therapy of endocrine disease: perspectives on the management of adrenal insufficiency: clinical insights from across Europe. European Journal of Endocrinology 2013 169 R165R175. (https://doi.org/10.1530/EJE-13-0450)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    BergthorsdottirRLeonsson-ZachrissonMOdenAJohannssonG. Premature mortality in patients with Addison’s disease: a population-based study. Journal of Clinical Endocrinology & Metabolism 2006 91 48494853. (https://doi.org/10.1210/jc.2006-0076)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    JohannssonGNilssonAGBergthorsdottirRBurmanPDahlqvistPEkmanBEngstromBEOlssonTRagnarssonORybergM Improved cortisol exposure-time profile and outcome in patients with adrenal insufficiency: a prospective randomized trial of a novel hydrocortisone dual-release formulation. Journal of Clinical Endocrinology & Metabolism 2012 97 473481. (https://doi.org/10.1210/jc.2011-1926)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    SchmitzBBrandSMBrandE. Aldosterone signaling and soluble adenylyl cyclase-a nexus for the kidney and vascular endothelium. Biochimica & Biophysica Acta 2014 1842 26012609. (https://doi.org/10.1016/j.bbadis.2014.05.036)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Ruiz-OrtegaMLorenzoORuperezMEstebanVSuzukiYMezzanoSPlazaJJEgidoJ. Role of the renin-angiotensin system in vascular diseases - expanding the field. Hypertension 2001 38 13821387. (https://doi.org/10.1161/hy1201.100589)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    TaubmanMB. Angiotensin II: A vasoactive hormone with ever-increasing biological roles. Circulation Research 2003 92 911. (https://doi.org/10.1161/01.RES.0000052920.70316.AE)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    InderWJMeyerCHuntPJ. Management of hypertension and heart failure in patients with Addison’s disease. Clinical Endocrinology 2015 82 789792. (https://doi.org/10.1111/cen.12592)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    EspositoDPasqualiDJohannssonG. Primary adrenal insufficiency: managing mineralocorticoid replacement therapy. Journal of Clinical Endocrinology & Metabolism 2018 103 376387. (https://doi.org/10.1210/jc.2017-01928)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    BasuRPoglitschMYogasundaramHThomasJRoweBHOuditGY. Roles of angiotensin peptides and recombinant human ACE2 in heart failure. Journal of the American College of Cardiology 2017 69 805819. (https://doi.org/10.1016/j.jacc.2016.11.064)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    PavoNGoliaschGWurmRNovakJStrunkGGyongyosiMPoglitschMSaemannMDHulsmannM. Low- and High-renin Heart Failure Phenotypes with Clinical Implications. Clinical Chemistry 2018 64 597608. (https://doi.org/10.1373/clinchem.2017.278705)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    JonesESVinhAMcCarthyCAGaspariTAWiddopRE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacology & Therapeutics 2008 120 292316. (https://doi.org/10.1016/j.pharmthera.2008.08.009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    SakataYMasuyamaTYamamotoKDoiRManoTKuzuyaTMiwaTTakedaHHoriM. Renin angiotensin system-dependent hypertrophy as a contributor to heart failure in hypertensive rats: different characteristics from renin angiotensin system-independent hypertrophy. Journal of the American College of Cardiology 2001 37 293299. (https://doi.org/10.1016/S0735-1097(00)01064-0)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    PfefferMAMcMurrayJJVelazquezEJRouleauJLKoberLMaggioniAPSolomonSDSwedbergKVan de WerfFWhiteH Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. New England Journal of Medicine 2003 349 18931906. (https://doi.org/10.1056/NEJMoa032292)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    FlatherMDYusufSKøberLPfefferMHallAMurrayGTorp-PedersenCBallSPogueJMoyéL Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet 2000 355 15751581. (https://doi.org/10.1016/S0140-6736(00)02212-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    SantosRAFerreiraAJVerano-BragaTBaderM. Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin-angiotensin system. Journal of Endocrinology 2013 216 R1R17. (https://doi.org/10.1530/JOE-12-0341)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    VinhAWiddopREDrummondGRGaspariTA. Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice. Cardiovascular Research 2008 77 178187. (https://doi.org/10.1093/cvr/cvm021)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    OelkersWBährV. Effects of fludrocortisone withdrawal on plasma angiotensin II, ACTH, vasopressin, and potassium in patients with Addison’s disease. Acta Endocrinologica 1987 115 325330. (https://doi.org/10.1530/acta.0.1150325)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    FalezzaGLechi SantonastasoCParisiTMuggeoM. High serum levels of angiotensin-converting enzyme in untreated Addison’s disease. Journal of Clinical Endocrinology and Metabolism 1985 61 496498. (https://doi.org/10.1210/jcem-61-3-496)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    BornsteinSRAllolioBArltWBarthelADon-WauchopeAHammerGDHusebyeESMerkeDPMuradMHStratakisCA Diagnosis and treatment of primary adrenal insufficiency: an Endocrine Society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism 2016 101 364389. (https://doi.org/10.1210/jc.2015-1710)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    HusebyeESAllolioBArltWBadenhoopKBensingSBetterleCFalorniAGanEHHultingALKasperlik-ZaluskaA Consensus statement on the diagnosis, treatment and follow-up of patients with primary adrenal insufficiency. Journal of Internal Medicine 2014 275 104115. (https://doi.org/10.1111/joim.12162)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    BensingSBrandtLTabarojFSjobergONilssonBEkbomABlomqvistPKampeO. Increased death risk and altered cancer incidence pattern in patients with isolated or combined autoimmune primary adrenocortical insufficiency. Clinical Endocrinology 2008 69 697704. (https://doi.org/10.1111/j.1365-2265.2008.03340.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    FilipssonHMonsonJPKoltowska-HaggstromMMattssonAJohannssonG. The impact of glucocorticoid replacement regimens on metabolic outcome and comorbidity in hypopituitary patients. Journal of Clinical Endocrinology and Metabolism 2006 91 39543961. (https://doi.org/10.1210/jc.2006-0524)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    GiordanoRMarzottiSBalboMRomagnoliSMarinazzoEBerardelliRMigliarettiGBensoAFalorniAGhigoE Metabolic and cardiovascular profile in patients with Addison’s disease under conventional glucocorticoid replacement. Journal of Endocrinological Investigation 2009 32 917923. (https://doi.org/10.1007/BF03345773)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    DebonoMRossRJNewell-PriceJ. Inadequacies of glucocorticoid replacement and improvements by physiological circadian therapy. European Journal of Endocrinology 2009 160 719729. (https://doi.org/10.1530/EJE-08-0874)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    IsidoriAMVenneriMAGraziadioCSimeoliCFioreDHasenmajerVSbardellaEGianfrilliDPozzaCPasqualettiP Effect of once-daily, modified-release hydrocortisone versus standard glucocorticoid therapy on metabolism and innate immunity in patients with adrenal insufficiency (DREAM): a single-blind, randomised controlled trial. Lancet. Diabetes and Endocrinology 2018 6 173185. (https://doi.org/10.1016/S2213-8587(17)30398-4)

    • Crossref
    • Search Google Scholar
    • Export Citation

PubMed

Google Scholar