Prognostic significance of TERT promoter and BRAF mutations in TIR-4 and TIR-5 thyroid cytology

in European Journal of Endocrinology
Correspondence should be addressed to C Mian; Email: caterina.mian@unipd.it
Restricted access

Objective

Follicular-derived thyroid cancers generally have a good prognosis, but in a minority of cases, they have an aggressive behavior and develop distant metastases, with an increase in the associated mortality. None of the prognostic markers currently available prior to surgery can identify such cases.

Methods

TERT promoter and BRAF gene mutations were examined in a series of 436 consecutive TIR-4 and TIR-5 nodes referred for surgery. Follow-up (median: 59 months, range: 7–293 months) was available for 384/423 patients with malignant nodes.

Results

TERT promoter and BRAF mutations were detected in 20/436 (4.6%) and 257/434 thyroid nodules (59.2%), respectively. At the end of the follow-up, 318/384 patients (82.8%) had an excellent outcome, 48/384 (12.5%) had indeterminate response or biochemical persistence, 18/384 (4.7%) had a structural persistence or died from thyroid cancer. TERT promoter mutations correlated with older age (P < 0.0001), larger tumor size (P = 0.0002), oxyntic and aggressive PTC variants (P = 0.01), higher tumor stages (P < 0.0001), distant metastases (<0.0001) and disease outcome (P < 0.0001). At multivariate analysis, TERT promoter mutation was not an independent predictor of disease outcome. TERT promoter mutation- (OR: 40.58; 95% CI: 3.06–539.04), and N1b lymph node metastases (OR: 40.16, 95% CI: 3.48–463.04) were independent predictors of distant metastases. BRAF mutation did not predict the outcome, and it correlated with a lower incidence of distant metastases (P = 0.0201).

Conclusions

TERT promoter mutation proved an independent predictor of distant metastases, giving clinicians the chance to identify many of the patients who warranted more aggressive initial treatment and closer follow-up.

 

     European Society of Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 773 773 123
Full Text Views 112 112 9
PDF Downloads 55 55 13

Altmetrics

References

  • 1

    HundahlSAFlemingIDFremgenAMMenckHR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 1998 83 26382648. (https://doi.org/10.1002/(SICI)1097-0142(19981215)83:12<2638::AID-CNCR31>3.0.CO;2-1)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    PaciniFBasoloFBellantoneRBoniGCannizzaroMADeMDuranteCEliseiRFaddaGFrasoldatiA Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. Journal of Endocrinological Investigation 2018 41 849876. (https://doi.org/10.1007/s40618-018-0884-2)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    HaugenBRAlexanderEKBibleKCDohertyGMMandelSJNikiforovYEPaciniFRandolphGWSawkaAMSchlumbergerM 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016 26 1133. (https://doi.org/10.1089/thy.2015.0020)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    GroganRHKaplanSPCaoHWeissREDegrootLJSimonCAEmbiaOMAAngelosPKaplanELSchechterRB. A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up. Surgery 2013 154 14361446; discussion 14461447. (https://doi.org/10.1016/j.surg.2013.07.008)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    SampsonEBrierleyJDLeLWRotsteinLTsangRW. Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis. Cancer 2007 110 14511456. (https://doi.org/10.1002/cncr.22956)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    VuongHGAltibiAMDuongUNNgoHTPhamTQTranHMOishiNMochizukiKNakazawaTHassellL Role of molecular markers to predict distant metastasis in papillary thyroid carcinoma: promising value of tert promoter mutations and insignificant role of BRAF mutations-a meta-analysis. Tumour Biology 2017 39 1010428317713913. (https://doi.org/10.1177/1010428317713913)

    • Search Google Scholar
    • Export Citation
  • 7

    TavaresCMeloMCameselle-TeijeiroJMSoaresPSobrinho-SimõesM. ENDOCRINE TUMOURS: Genetic predictors of thyroid cancer outcome. European Journal of Endocrinology 2016 174 R117R126. (https://doi.org/10.1530/EJE-15-0605)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    GaluppiniFPennelliGVianelloFCensiSZamboninLWatutantrige-FernandoSMansoJNacamulliDLoraOPelizzoMR BRAF analysis before surgery for papillary thyroid carcinoma: correlation with clinicopathological features and prognosis in a single-institution prospective experience. Clinical Chemistry and Laboratory Medicine 2016 54 15311539 . (https://doi.org/10.1515/cclm-2015-0218)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    LiCLeeKCSchneiderEBZeigerMA. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. Journal of Clinical Endocrinology and Metabolism 2012 97 45594570. (https://doi.org/10.1210/jc.2012-2104)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    TufanoRPTeixeiraGVBishopJCarsonKAXingM. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine 2012 91 274286. (https://doi.org/10.1097/MD.0b013e31826a9c71)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    XingM. Prognostic utility of BRAF mutation in papillary thyroid cancer. Molecular and Cellular Endocrinology 2010 321 8693. (https://doi.org/10.1016/j.mce.2009.10.012)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    XingMLiuRLiuXMuruganAKZhuGZeigerMAPaiSBishopJ. BRAF V600E and tert promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. Journal of Clinical Oncology 2014 32 27182726. (https://doi.org/10.1200/JCO.2014.55.5094)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    LiuCChenTLiuZ. Associations between BRAFV600E and prognostic factors and poor outcomes in papillary thyroid carcinoma: a meta-analysis. World Journal of Surgical Oncology 2016 14 241. (https://doi.org/10.1186/s12957-016-0979-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    ZhangQzhengLSZhangQxingGYjieCQyaoZQ. Meta-analyses of association between BRAF(600E) mutation and clinicopathological features of papillary thyroid carcinoma. Cellular Physiology and Biochemistry 2016 38 763776. (https://doi.org/10.1159/000443032)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    SancisiVNicoliDRagazziMPianaSCiarrocchiA. BRAFV600E mutation does not mean distant metastasis in thyroid papillary carcinomas. Journal of Clinical Endocrinology and Metabolism 2012 97 E1745E1749. (https://doi.org/10.1210/jc.2012-1526)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    MeloMGaspar da RochaABatistaRVinagreJMartinsMJCostaGRibeiroCCarrilhoFLeiteVLoboC TERT, BRAF, and NRAS in primary thyroid cancer and metastatic disease. Journal of Clinical Endocrinology and Metabolism 2017 102 18981907. (https://doi.org/10.1210/jc.2016-2785)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    LiuXBishopJShanYPaiSLiuDMuruganAKSunHEl-NaggarAKXingM. Highly prevalent tert promoter mutations in aggressive thyroid cancers. Endocrine-Related Cancer 2013 20 603610. (https://doi.org/10.1530/ERC-13-0210)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    LiuRXingM. Tert promoter mutations in thyroid cancer. Endocrine-Related Cancer 2016 23 R143R155. (https://doi.org/10.1530/ERC-15-0533)

  • 19

    MeloMda RochaAGVinagreJBatistaRPeixotoJTavaresCCelestinoRAlmeidaASalgadoCEloyC Tert promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. Journal of Clinical Endocrinology and Metabolism 2014 99 E754E765. (https://doi.org/10.1210/jc.2013-3734)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    LandaIGanlyIChanTAMitsutakeNMatsuseMIbrahimpasicTGhosseinRAFaginJA. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. Journal of Clinical Endocrinology and Metabolism 2013 98 E1562E1566. (https://doi.org/10.1210/jc.2013-2383)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    LiuXQuSLiuRShengCShiXZhuGMuruganAKGuanHYuHWangY TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. Journal of Clinical Endocrinology and Metabolism 2014 99 E1130E1136. (https://doi.org/10.1210/jc.2013-4048)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    GandolfiGRagazziMFrasoldatiAPianaSCiarrocchiASancisiV. TERT promoter mutations are associated with distant metastases in papillary thyroid carcinoma. European Journal of Endocrinology 2015 172 403413. (https://doi.org/10.1530/EJE-14-0837)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    KimTHKiCSKimHSKimKChoeJHKimJHKimJSOhYLHahnSYShinJH Refining dynamic risk stratification and prognostic groups for differentiated thyroid cancer with tert promoter mutations. Journal of Clinical Endocrinology and Metabolism 2017 102 17571764. (https://doi.org/10.1210/jc.2016-3434)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    NardiFBasoloFCrescenziAFaddaGFrasoldatiAOrlandiFPalombiniLPapiniEZiniMPontecorviA Italian consensus for the classification and reporting of thyroid cytology. Journal of Endocrinological Investigation 2014 37 593599. (https://doi.org/10.1007/s40618-014-0062-0)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    WittekindCSobinLGM. TNM: classification of malignant tumours. In TNM Classification of Malignant Tumours 7th ed. 2009. Wiley-Blackwell: Oxford UK

    • Search Google Scholar
    • Export Citation
  • 26

    TuttleRMHaugenBPerrierND. Updated American Joint Committee on cancer/tumor-node-metastasis staging system for differentiated and anaplastic thyroid cancer (eighth edition): what changed and why? Thyroid 2017 27 751756. (https://doi.org/10.1089/thy.2017.0102)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    MomessoDPVaismanFYangSPBulzicoDACorboRVaismanMTuttleRM. Dynamic risk stratification in patients with differentiated thyroid cancer treated without radioactive iodine. Journal of Clinical Endocrinology and Metabolism 2016 101 26922700. (https://doi.org/10.1210/jc.2015-4290)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    BarolloSPezzaniRCristianiARedaelliMZamboninLRubinBBertazzaLZaneMMucignat-CarettaCBulfoneA Prevalence, tumorigenic role, and biochemical implications of rare BRAF alterations. Thyroid 2014 24 809819. (https://doi.org/10.1089/thy.2013.0403)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    AsaSL. My approach to oncocytic tumours of the thyroid. Journal of Clinical Pathology 2004 57 225232. (https://doi.org/10.1136/JCP.2003.008474)

  • 30

    TalliniGHsuehALiuSGarcia-RostanGSpeicherMRWardDC. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hürthle cell) neoplasms detected by comparative genomic hybridization. Laboratory Investigation 1999 79 547555.

    • Search Google Scholar
    • Export Citation
  • 31

    de VriesMMCelestinoRCastroPEloyCMáximoVvan der WalJEPlukkerJTMLinksTPHofstraRMWSobrinho-SimõesM RET/PTC rearrangement is prevalent in follicular Hürthle cell carcinomas. Histopathology 2012 61 833843. (https://doi.org/10.1111/j.1365-2559.2012.04276.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    JacquesCGuillotinDFontaineJFFrancBMirebeau-PrunierDFleuryAMalthieryYSavagnerF. DNA microarray and miRNA analyses reinforce the classification of follicular thyroid tumors. Journal of Clinical Endocrinology and Metabolism 2013 98 E981E989. (https://doi.org/10.1210/jc.2012-4006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    HerreraMFHayIDWuPSGoellnerJRRyanJJEbersoldJRBergstralhEJGrantCS. Hürthle cell (oxyphilic) papillary thyroid carcinoma: a variant with more aggressive biologic behavior. World Journal of Surgery 1992 16 669674; discussion 774775. (https://doi.org/10.1007/BF02067351)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    HongJHYiHSYiSKimHWLeeJKimKS. Implications of oncocytic change in papillary thyroid cancer. Clinical Endocrinology 2016 85 797804. (https://doi.org/10.1111/cen.13115)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    MilhollandBAutonASuhYVijgJ. Age-related somatic mutations in the cancer genome. Oncotarget 2015 6 2462724635. (https://doi.org/10.18632/oncotarget.5685)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    RisquesRAKennedySR. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genetics 2018 14 e1007108. (https://doi.org/10.1371/journal.pgen.1007108)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Cited By

PubMed

Google Scholar