Prolactin and breast increase during pregnancy in PCOS: linked to long-term metabolic health?

in European Journal of Endocrinology
Correspondence should be addressed to M O Underdal; Email: maria.o.underdal@ntnu.no
Restricted access

Objective

To explore whether gestational prolactin and breast increase are markers of metabolic health in pregnancy and on long-term, in PCOS.

Design

Follow-up study. Women with PCOS, according to the Rotterdam criteria (n = 239), former participants of the randomized controlled trial (RCT) PregMet were invited, 131 participated in the current follow-up study, at mean 8 years after pregnancy.

Methods

Metformin 2000 mg/day or placebo from first trimester to delivery in the original RCT. No intervention in the current study.

Prolactin was analyzed in the first trimester and at gestational week 32 and metabolic characteristics which are part of the metabolic syndrome and measures of glucose homeostasis were examined. Metabolic health was also evaluated according to breast increase versus lack of breast increase during pregnancy.

Results

Prolactin increase in pregnancy was negatively correlated to BMI (P = 0.007) and systolic blood pressure (P ≤ 0.001) in gestational week 32. Prolactin at gestational week 32 was negatively correlated to BMI (P = 0.044) and visceral fat area (P = 0.028) at 8-year follow-up in an unadjusted model. Prolactin at gestational week 32 showed no associations to metabolic health at follow-up when baseline BMI was adjusted for. Women who reported lack of breast increase during pregnancy, had higher BMI (P = 0.034), waist-hip ratio (P = 0.004), visceral fat area (P = 0.050), total cholesterol (P = 0.022), systolic (P = 0.027) and diastolic blood pressure (P = 0.011) at 8-year follow-up.

Conclusion

High prolactin levels and breast increase in pregnancy were associated with a more favorable long-term metabolic health in women with PCOS. Both prolactin and breast increase may be mediated by gestational BMI.

 

     European Society of Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 526 526 66
Full Text Views 112 112 9
PDF Downloads 47 47 4

Altmetrics

Figures

References

  • 1

    MarchWAMooreVMWillsonKJPhillipsDIWNormanRJDaviesMJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Human Reproduction 2010 25 544551. (https://doi.org/10.1093/humrep/dep399)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Diamanti-KandarakisEDunaifA. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocrine Reviews 2012 33 9811030. (https://doi.org/10.1210/er.2011-1034)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    GlintborgDHenriksenJEAndersenMHagenCHangaardJRasmussenPESchousboeKHermannAP. Prevalence of endocrine diseases and abnormal glucose tolerance tests in 340 Caucasian premenopausal women with hirsutism as the referral diagnosis. Fertility and Sterility 2004 82 15701579. (https://doi.org/10.1016/j.fertnstert.2004.06.040)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    GlintborgDRubinKHNyboMAbrahamsenBAndersenM. Cardiovascular disease in a nationwide population of Danish women with polycystic ovary syndrome. Cardiovascular Diabetology 2018 17 37. (https://doi.org/10.1186/s12933-018-0680-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    RoosNKielerHSahlinLEkman-OrdebergGFalconerHStephanssonO. Risk of adverse pregnancy outcomes in women with polycystic ovary syndrome: population based cohort study. BMJ 2011 343 d6309. (https://doi.org/10.1136/bmj.d6309)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    KjerulffLESanchez-RamosLDuffyD. Pregnancy outcomes in women with polycystic ovary syndrome: a metaanalysis. American Journal of Obstetrics and Gynecology 2011 204 558.e1558.e6. (https://doi.org/10.1016/j.ajog.2011.03.021)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    BoomsmaCMEijkemansMJCHughesEGVisserGHAFauserBCJMMacklonNS. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Human Reproduction Update 2006 12 673683. (https://doi.org/10.1093/humupd/dml036)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    PalmCVBGlintborgDKyhlHBMcIntyreHDJensenRCJensenTKJensenDMAndersenM. Polycystic ovary syndrome and hyperglycaemia in pregnancy. A narrative review and results from a prospective Danish cohort study. Diabetes Research and Clinical Practice 2018 145 167177. (https://doi.org/10.1016/j.diabres.2018.04.030)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    BaeyensLHindiSSorensonRLGermanMS. Beta-Cell adaptation in pregnancy. Diabetes Obesity and Metabolism 2016 18 (Supplement 1) 6370. (https://doi.org/10.1111/dom.12716)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    GlintborgDAltinokMMummHBuchKRavnPAndersenM. Prolactin is associated with metabolic risk and cortisol in 1007 women with polycystic ovary syndrome. Human Reproduction 2014 29 17731779. (https://doi.org/10.1093/humrep/deu133)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    WangTLuJXuYLiMSunJZhangJXuBXuMChenYBiY Circulating prolactin associates with diabetes and impaired glucose regulation: a population-based study. Diabetes Care 2013 36 19741980. (https://doi.org/10.2337/dc12-1893)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    TherkelsenKEAbrahamTMPedleyAMassaroJMSutherlandPHoffmannUFoxCS. Association between prolactin and incidence of cardiovascular risk factors in the Framingham heart study. Journal of the American Heart Association 2016 5 e002640. (https://doi.org/10.1161/JAHA.115.002640)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    VankyENordskarJJLeitheHHjorth-HansenAKMartinussenMCarlsenSM. Breast size increment during pregnancy and breastfeeding in mothers with polycystic ovary syndrome: a follow-up study of a randomised controlled trial on metformin versus placebo. BJOG 2012 119 14031409. (https://doi.org/10.1111/j.1471-0528.2012.03449.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    TurcksinRBelSGaljaardSDevliegerR. Maternal obesity and breastfeeding intention, initiation, intensity and duration: a systematic review. Maternal and Child Nutrition 2014 10 166183. (https://doi.org/10.1111/j.1740-8709.2012.00439.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    WinkvistABrantsaeterALBrandhagenMHaugenMMeltzerHMLissnerL. Maternal prepregnant body mass index and gestational weight gain are associated with initiation and duration of breastfeeding among Norwegian mothers. Journal of Nutrition 2015 145 12631270. (https://doi.org/10.3945/jn.114.202507)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    VankyEIsaksenHMoenMHCarlsenSM. Breastfeeding in polycystic ovary syndrome. Acta Obstetricia et Gynecologica Scandinavica 2008 87 531535. (https://doi.org/10.1080/00016340802007676)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    JohamAENanayakkaraNRanasinhaSZoungasSBoyleJHarrisonCLForderPLoxtonDVankyETeedeHJ. Obesity, polycystic ovary syndrome and breastfeeding: an observational study. Acta Obstetricia et Gynecologica Scandinavica 2016 95 458466. (https://doi.org/10.1111/aogs.12850)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    TeedeHJMissoMLCostelloMFDokrasALavenJMoranLPiltonenTNormanRJ & International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clinical Endocrinology 2018 89 251268. (https://doi.org/10.1111/cen.13795)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    LovvikTSCarlsenSMSalvesenØSteffensenBBixoMGomez-RealFLonnebotnMHestvoldKVZabielskaRHirschbergAL Use of metformin to treat pregnant women with polycystic ovary syndrome (PregMet2): a randomised, double-blind, placebo-controlled trial. Lancet: Diabetes and Endocrinology 2019 7 256266. (https://doi.org/10.1016/S2213-8587(19)30002-6)

    • Search Google Scholar
    • Export Citation
  • 20

    PinolaPPuukkaKPiltonenTTPuurunenJVankyESundstrom-PoromaaIStener-VictorinELinden HirschbergARavnPSkovsager AndersenM Normo- and hyperandrogenic women with polycystic ovary syndrome exhibit an adverse metabolic profile through life. Fertility and Sterility 2017 107 788795.e2. (https://doi.org/10.1016/j.fertnstert.2016.12.017)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    DaanNMPLouwersYVKosterMPHEijkemansMJCde RijkeYBLentjesEWGFauserBCJMLavenJSE. Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: who is really at risk? Fertility and Sterility 2014 102 1444.e31451.e3. (https://doi.org/10.1016/j.fertnstert.2014.08.001)

    • Search Google Scholar
    • Export Citation
  • 22

    VankyEStridsklevSHeimstadRRomundstadPSkogoyKKleggetveitOHjelleSvon BrandisPEikelandTFloK Metformin versus placebo from first trimester to delivery in polycystic ovary syndrome: a randomized, controlled multicenter study. Journal of Clinical Endocrinology and Metabolism 2010 95 E448E455. (https://doi.org/10.1210/jc.2010-0853)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    UnderdalMOStridsklevSOppenIHHogetveitKAndersenMSVankyE. Does metformin treatment during pregnancy modify the future metabolic profile in women With PCOS? Journal of Clinical Endocrinology and Metabolism 2018 103 24082413. (https://doi.org/10.1210/jc.2018-00485)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility 2004 81 1925. (https://doi.org/10.1016/j.fertnstert.2003.10.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    HattoriNAisakaKShimatsuA. A possible cause of the variable detectability of macroprolactin by different immunoassay systems. Clinical Chemistry and Laboratory Medicine 2016 54 603608. (https://doi.org/10.1515/cclm-2015-0484)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    GrattanDRSteynFJKokayICAndersonGMBunnSJ. Pregnancy-induced adaptation in the neuroendocrine control of prolactin secretion. Journal of Neuroendocrinology 2008 20 497507. (https://doi.org/10.1111/j.1365-2826.2008.01661.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    TerraLFGaray-MalpartidaMHWailemannRAMSogayarMCLabriolaL. Recombinant human prolactin promotes human beta cell survival via inhibition of extrinsic and intrinsic apoptosis pathways. Diabetologia 2011 54 13881397. (https://doi.org/10.1007/s00125-011-2102-z)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    BakerJLGamborgMHeitmannBLLissnerLSorensenTIRasmussenKM. Breastfeeding reduces postpartum weight retention. American Journal of Clinical Nutrition 2008 88 15431551. (https://doi.org/10.3945/ajcn.2008.26379)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    RamKTBobbyPHailpernSMLoJCSchockenMSkurnickJSantoroN. Duration of lactation is associated with lower prevalence of the metabolic syndrome in midlife – SWAN, the study of women’s health across the nation. American Journal of Obstetrics and Gynecology 2008 198 268.e1268.e6. (https://doi.org/10.1016/j.ajog.2007.11.044)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Velle-ForbordVSkrastadRBSalvesenØKramerMSMorkenNHVankyE. Breastfeeding and long-term maternal metabolic health in the HUNT study: a longitudinal population-based cohort study. BJOG 2019 126 526534. (https://doi.org/10.1111/1471-0528.15538)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Ortega-GonzalezCCardozaLCoutinoBHidalgoRArteaga-TroncosoGParraA. Insulin sensitizing drugs increase the endogenous dopaminergic tone in obese insulin-resistant women with polycystic ovary syndrome. Journal of Endocrinology 2005 184 233239. (https://doi.org/10.1677/joe.1.05844)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    SyngelakiANicolaidesKHBalaniJHyerSAkolekarRKotechaRPastidesAShehataH. Metformin versus placebo in obese pregnant women without diabetes mellitus. New England Journal of Medicine 2016 374 434443. (https://doi.org/10.1056/NEJMoa1509819)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    ChiswickCReynoldsRMDenisonFDrakeAJForbesSNewbyDEWalkerBRQuenbySWraySWeeksA Effect of metformin on maternal and fetal outcomes in obese pregnant women (EMPOWaR): a randomised, double-blind, placebo-controlled trial. Lancet: Diabetes and Endocrinology 2015 3 778786. (https://doi.org/10.1016/S2213-8587(15)00219-3)

    • Search Google Scholar
    • Export Citation
  • 34

    ValdesESepulveda-MartinezACandiaPAbusadaNOrellanaRManukianBCuellarE. Metformin as a prophylactic treatment of gestational diabetes in pregnant patients with pregestational insulin resistance: a randomized study. Journal of Obstetrics and Gynaecology Research 2018 44 8186. (https://doi.org/10.1111/jog.13477)

    • Crossref
    • Search Google Scholar
    • Export Citation

PubMed

Google Scholar