Ambient temperature and prevalence of diabetes and insulin resistance in the Spanish population: Di@bet.es study

in European Journal of Endocrinology
Correspondence should be addressed to S Valdés; Email: sergio.valdes@hotmail.es
Restricted access

Objective

The activity of brown adipose tissue is sensitive to changes in ambient temperature. A lower exposure to cold could result in an increased risk of developing diabetes at population level, although this factor has not yet been sufficiently studied.

Design

We studied 5072 subjects, participants in a national, cross-sectional population-based study representative of the Spanish adult population (Di@bet.es study). All subjects underwent a clinical, demographic and lifestyle survey, a physical examination and blood sampling (75 g oral glucose tolerance test). Insulin resistance was estimated with the homeostasis model assessment (HOMA-IR). The mean annual temperature (°C) in each individual municipality was collected from the Spanish National Meteorology Agency.

Results

Linear regression analysis showed a significant positive association between mean annual temperature and fasting plasma glucose (β: 0.087, P < 0.001), 2 h plasma glucose (β: 0.049, P = 0.008) and HOMA-IR (β: 0.046, P = 0.008) in multivariate adjusted models. Logistic regression analyses controlled by multiple socio-demographic variables, lifestyle, adiposity (BMI) and geographical elevation showed increasing odds ratios for prediabetes (WHO 1999), ORs 1, 1.26 (0.95–1.66), 1.08 (0.81–1.44) and 1.37 (1.01–1.85) P for trend = 0.086, diabetes (WHO 1999) ORs 1, 1.05 (0.79–1.39), 1.20 (0.91–1.59) and 1.39 (1.02–1.90) P = 0.037, and insulin resistance (HOMA-IR ≥75th percentile of the non-diabetic population): ORs 1, 1.03 (0.82–1.30), 1.22 (0.96–1.55), 1.26 (0.98–1.63) (P for trend = 0.046) as the mean annual temperature (into quartiles) rose.

Conclusions

Our study reports an association between ambient temperature and the prevalence of dysglycemia and insulin resistance in Spanish adults, consistent with the hypothesis that a lower exposure to cold could be associated with a higher risk of metabolic derangements.

 

     European Society of Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 848 848 144
Full Text Views 156 156 43
PDF Downloads 46 46 12

Altmetrics

References

  • 1

    CypessAMLehmanSWilliamsGTalIRodmanDGoldfineABKuoFCPalmerELTsengYHDoriaA Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine 2009 360 15091517. (https://doi.org/10.1056/NEJMoa0810780)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Van Marken LichtenbeltWDVanhommerigJWSmuldersNMDrossaertsJMKemerinkGJBouvyNDSchrauwenPTeuleGJ. Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 2009 360 15001508. (https://doi.org/10.1056/NEJMoa0808718)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    VirtanenKALidellMEOravaJHeglindMWestergrenRNiemiTTaittonenMLaineJSavistoNJEnerbäckS Functional brown adipose tissue in healthy adults. New England Journal of Medicine 2009 360 15181525. (https://doi.org/10.1056/NEJMoa0808949)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    SaitoMOkamatsu-OguraYMatsushitaMWatanabeKYoneshiroTNio-KobayashiJIwanagaTMiyagawaMKameyaTNakadaK High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009 58 15261531. (https://doi.org/10.2337/db09-0530)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    ChenKYBrychtaRJLindermanJDSmithSCourvilleADieckmannWHerscovitchPMilloCMRemaleyALeeP Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. Journal of Clinical Endocrinology and Metabolism 2013 98 E1218E1223. (https://doi.org/10.1210/jc.2012-4213)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Van der LansAAHoeksJBransBVijgenGHVisserMGVosselmanMJHansenJJörgensenJAWuJMottaghyFM Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. Journal of Clinical Investigation 2013 123 33953403. (https://doi.org/10.1172/JCI68993)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    YoneshiroTAitaSMatsushitaMKayaharaTKameyaTKawaiYIwanagaTSaitoM. Recruited brown adipose tissue as an antiobesity agent in humans. Journal of Clinical Investigation 2013 123 34043408. (https://doi.org/10.1172/JCI67803)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    LeePGreenfieldJRHoKKFulhamMJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. American Journal of Physiology: Endocrinology and Metabolism 2010 299 E601E606. (https://doi.org/10.1152/ajpendo.00298.2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    MatsushitaMYoneshiroTAitaSKameyaTSugieHSaitoM. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. International Journal of Obesity 2014 38 812817. (https://doi.org/10.1038/ijo.2013.206)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    LeePSmithSLindermanJCourvilleABBrychtaRJDieckmannWWernerCDChenKYCeliFS. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 2014 63 36863698. (https://doi.org/10.2337/db14-0513)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    ChondronikolaMVolpiEBørsheimEPorterCAnnamalaiPEnerbäckSLidellMESarafMKLabbeSMHurrenNM Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014 63 40894099. (https://doi.org/10.2337/db14-0746)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    IwenKABackhausJCassensMWaltlMHedesanOCMerkelMHeerenJSinaCRademacherLWindjägerA et al. Cold-induced brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. Journal of Clinical Endocrinology and Metabolism 2017 102 42264234. (https://doi.org/10.1210/jc.2017-01250)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    HanssenMJHoeksJBransBvan der LansAASchaartGvan den DriesscheJJJörgensenJABoekschotenMVHesselinkMKHavekesB Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nature Medicine 2015 21 863865. (https://doi.org/10.1038/nm.3891)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    StanfordKIMiddelbeekRJTownsendKLAnDNygaardEBHitchcoxKMMarkanKRNakanoKHirshmanMFTsengYH Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation 2013 123 215223. (https://doi.org/10.1172/JCI62308)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    ValdésSMaldonado-AraqueCGarcía-TorresFGodayABosch-ComasABordiúECalle-PascualACarmenaRCasamitjanaRCastañoL Ambient temperature and prevalence of obesity in the Spanish population: the Di@bet.es study. Obesity 2014 22 23282332. (https://doi.org/10.1002/oby.20866)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    SoriguerFGodayABosch-ComasABordiúECalle-PascualACarmenaRCasamitjanaRCastañoLCastellCCataláM Prevalence of diabetes mellitus and impaired glucose regulation in Spain: the Di@bet.es Study. Diabetologia 2012 55 8893. (https://doi.org/10.1007/s00125-011-2336-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    SchröderHFitóMEstruchRMartínez-GonzálezMACorellaDSalas-SalvadóJLamuela-RaventósRRosESalaverríaIFiolM A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. Journal of Nutrition 2011 141 11401145. (https://doi.org/10.3945/jn.110.135566)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    IPAQ Group. International Physical Activity Questionarie. Web site. (available at: www.ipaq.ki.se). Accessed on 27 January 2019.

  • 19

    MatthewsDRHoskerJPRudenskiASNaylorBATreacherDFTurnerRC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985 28 412419. (https://doi.org/10.1007/BF00280883)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1: diagnosis and classification of diabetes mellitus. Diabetic Medicine 1998 15 539553.

    • Search Google Scholar
    • Export Citation
  • 21

    Agencia Estatal de Metereologia. Web site. (available at: www.aemet.es). Accessed on 27 January 2019.

  • 22

    WoolcottOOCastilloOAGutierrezCElashoffRMStefanovskiDBergmanRN. Inverse association between diabetes and altitude: a cross-sectional study in the adult population of the United States. Obesity 2014 22 20802090. (https://doi.org/10.1002/oby.20800)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    OravaJNuutilaPLidellMEOikonenVNoponenTViljanenTScheininMTaittonenMNiemiTEnerbäckS et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metabolism 2011 14 272279. (https://doi.org/10.1016/j.cmet.2011.06.012)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    TaittonenMNiemiTEnerbäckS Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metabolism 2011 3 272279. (https://doi.org/10.1016/j.cmet.2011.06.012)

    • Search Google Scholar
    • Export Citation
  • 25

    OuelletVLabbéSMBlondinDPPhoenixSGuérinBHamanFTurcotteEERichardDCarpentierAC. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. Journal of Clinical Investigation 2012 122 545552. (https://doi.org/10.1172/JCI60433)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    OuelletVLabbéSMBlondinDPPhoenixSGuérinBHamanFTurcotteEERichardDCarpentierAC. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. Journal of Clinical Investigation 2012 122 545552. (https://doi.org/10.1172/JCI60433)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    TuckerPGillilandJ. The effect of season and weather on physical activity: a systematic review. Public Health 2007 121 909922. (https://doi.org/10.1016/j.puhe.2007.04.009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    RidgersNDSalmonJTimperioA. Too hot to move? Objectively assessed seasonal changes in Australian children’s physical activity. International Journal of Behavioral Nutrition and Physical Activity 2015 12 77. (https://doi.org/10.1186/s12966-015-0245-x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    SuwanapapornPChaiyabutrNThammacharoenS. A low degree of high ambient temperature decreased food intake and activated median preoptic and arcuate nuclei. Physiology and Behavior 2017 181 1622. (https://doi.org/10.1016/j.physbeh.2017.08.027)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    FridlyandLEPhilipsonLH. Cold climate genes and the prevalence of type 2 diabetes mellitus. Medical Hypotheses 2006 67 10341041. (https://doi.org/10.1016/j.mehy.2006.04.057)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    LappalainenTSalmelaEAndersenPMDahlman-WrightKSistonenPSavontausMLSchreiberSLahermoPKereJ. Genomic landscape of positive natural selection in northern European populations. European Journal of Human Genetics 2010 18 471478. (https://doi.org/10.1038/ejhg.2009.184)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    ClaussnitzerMDankelSNKimKHQuonGMeulemanWHaugenCGlunkVSousaISBeaudryJLPuviindranV FTO obesity variant circuitry and adipocyte browning in humans. New England Journal of Medicine 2015 373 895907. (https://doi.org/10.1056/NEJMoa1502214)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    SpeakmanJRHeidari-BakavoliS. Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature. Scientific Reports 2016 6 30409. (https://doi.org/10.1038/srep30409)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    BlauwLLAzizNATannemaatMRBlauwCAde CraenAJPijlHRensenPC. Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature. BMJ Open Diabetes Research and Care 2017 205 e000317. (https://doi.org/10.1136/bmjdrc-2016-000317)

    • Search Google Scholar
    • Export Citation
  • 35

    Von KorffMKoepsellTDCurrySDiehrP. Multi-level analysis in epidemiologic research on health behaviors and outcomes. American Journal of Epidemiology 1992 135 10771082. (https://doi.org/10.1093/oxfordjournals.aje.a116207)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

PubMed

Google Scholar