Diagnosis and follow-up of type 2 diabetes in women with PCOS: a role for OGTT?

in European Journal of Endocrinology
Correspondence should be addressed to M Andersen; Email: msa@rsyd.dk
Restricted access

Polycystic ovary syndrome (PCOS) is common in premenopausal women. The majority of women with PCOS have insulin resistance and the risk of type 2 diabetes mellitus (T2D) is higher in women with PCOS compared to controls. In non-pregnant women with PCOS, glycemic status may be assessed by oral glucose tolerance test (OGTT), fasting plasma glucose (FPG) or HbA1c. OGTT has been reckoned gold standard test for diagnosing T2D, but OGTT is rarely used for diagnostic purpose in other non-pregnant individuals at risk of T2D, apart from PCOS. OGTT has questionable reproducibility, and high sensitivity of the 2-h glucose value is at the expense of relatively low specificity, especially regarding impaired glucose tolerance (IGT). Furthermore, lean women with PCOS are rarely diagnosed with T2D and only few percent of normal-weight women have prediabetes. Glycemic status is necessary at diagnosis and during follow-up of PCOS, especially in women with high risk of T2D (obesity, previous gestational diabetes (GDM)). We suggest that OGTT should be used in the same situations in PCOS as in other patient groups at risk of T2D. OGTT is indicated for diagnosing GDM; however, OGTT during pregnancy may not be indicated in lean women with PCOS without other risk factors for GDM.

 

     European Society of Endocrinology

Related Articles

Article Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 868 868 31
Full Text Views 1078 833 14
PDF Downloads 324 260 2

Altmetrics

Figures

  • View in gallery

    Glycemic status in PCOS is influenced by various factors, and treatment of PCOS will modify risk of type 2 diabetes mellitus, cardiovascular disease and mortality..

References

  • 1

    ConwayGDewaillyDDiamanti-KandarakisEEscobar-MorrealeHFFranksSGambineriAKelestimurFMacutDMicicDPasqualiR et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. European Journal of Endocrinology 2014 171 129. (https://doi.org/10.1530/EJE-14-0253)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    GlintborgDHenriksenJEAndersenMHagenCHangaardJRasmussenPESchousboeKHermannAP. Prevalence of endocrine diseases and abnormal glucose tolerance tests in 340 Caucasian premenopausal women with hirsutism as the referral diagnosis. Fertility and Sterility 2004 82 15701579. (https://doi.org/10.1016/j.fertnstert.2004.06.040)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    RubinKHGlintborgDNyboMAbrahamsenBAndersenM. Development and risk factors of type 2 diabetes in a nationwide population of women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2017 102 38483857. (https://doi.org/10.1210/jc.2017-01354)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    ZhouYWangXJiangYMaHChenLLaiCPengCHeCSunC. Association between polycystic ovary syndrome and the risk of stroke and all-cause mortality: insights from a meta-analysis. Gynecological Endocrinology 2017 33 904910. (https://doi.org/10.1080/09513590.2017.1347779)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    AndersonSABarryJAHardimanPJ. Risk of coronary heart disease and risk of stroke in women with polycystic ovary syndrome: a systematic review and meta-analysis. International Journal of Cardiology 2014 176 486487. (https://doi.org/10.1016/j.ijcard.2014.06.079)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    de GrootPCDekkersOMRomijnJADiebenSWHelmerhorstFM. PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis. Human Reproduction Update 2011 17 495500. (https://doi.org/10.1093/humupd/dmr001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    ZhaoLZhuZLouHZhuGHuangWZhangSLiuF. Polycystic ovary syndrome (PCOS) and the risk of coronary heart disease (CHD): a meta-analysis. Oncotarget 2016 7 3371533721. (https://doi.org/10.18632/oncotarget.13796)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    LegroRSArslanianSAEhrmannDAHoegerKMMuradMHPasqualiRWeltCK. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism 2013 98 45654592. (https://doi.org/10.1210/jc.2013-2350)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility 2004 81 1925.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    GoodmanNFCobinRHFutterweitWGlueckJSLegroRSCarminaE. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society Disease State Clinical Review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome. Endocrine Practices 2015 21 14151426. (https://doi.org/10.4158/EP15748.DSCPT2)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    PelanisRMellembakkenJRSundstrom-PoromaaIRavnPMorin-PapunenLTapanainenJSPiltonenTPuurunenJHirschbergALFedorcsakP et al. The prevalence of Type 2 diabetes is not increased in normal-weight women with PCOS. Human Reproduction 2017 32 22792286. (https://doi.org/10.1093/humrep/dex294)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    RoosNKielerHSahlinLEkman-OrdebergGFalconerHStephanssonO. Risk of adverse pregnancy outcomes in women with polycystic ovary syndrome: population based cohort study. BMJ 2011 343 d6309. (https://doi.org/10.1136/bmj.d6309)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    PanMLChenLRTsaoHMChenKH. Relationship between polycystic ovarian syndrome and subsequent gestational diabetes mellitus: a nationwide population-based study. PLoS ONE 2015 10 e0140544. (https://doi.org/10.1371/journal.pone.0140544)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    DMcIntyreDMJensenRCJensenHBKyhlTKJensenDGlintborgMAndersen. Gestational diabetes: does one size fit all? A challenge to uniform worldwide diagnostic thresholds. Diabetes Care 2018 41 13391342. (https://doi.org/10.2337/dc17-2393)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    PalmCVBGlintborgDKyhlHBMcIntyreHDJensenRCJensenTKJensenDMAndersenM. Polycystic ovary syndrome and hyperglycaemia in pregnancy. A narrative review and results from a prospective Danish cohort study. Diabetes Research and Clinical Practice 2018 Epub. (https://doi.org/10.1016/j.diabres.2018.04.030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    World Health Organisation. Definition Diagnosis and Classification of Diabetes Mellitus and its Complications1999.

  • 17

    SacksDBArnoldMBakrisGLBrunsDEHorvathARKirkmanMSLernmarkAMetzgerBENathanDM. Executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clinical Chemistry 2011 57 793798. (https://doi.org/10.1373/clinchem.2011.163634)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    LegroRSKunselmanARDodsonWCDunaifA. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. Journal of Clinical Endocrinology and Metabolism 1999 84 165169.

    • Search Google Scholar
    • Export Citation
  • 19

    HurdWWAbdel-RahmanMYIsmailSAAbdellahMASchmotzerCLSoodA. Comparison of diabetes mellitus and insulin resistance screening methods for women with polycystic ovary syndrome. Fertility and Sterility 2011 96 10431047. (https://doi.org/10.1016/j.fertnstert.2011.07.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011 34 (Supplement 1) S62S69.

  • 21

    VellingMLMummHAndersenMGlintborgD. Hemoglobin A1c as a tool for the diagnosis of type 2 diabetes in 208 premenopausal women with polycystic ovary syndrome. Fertility and Sterility 2011 96 12751280. (https://doi.org/10.1016/j.fertnstert.2011.08.035)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    PeterAFritscheAStefanNHeniMHaringHUSchleicherE. Diagnostic value of hemoglobin A1c for type 2 diabetes mellitus in a population at risk. Experimental and Clinical Endocrinology and Diabetes 2011 119 234237. (https://doi.org/10.1055/s-0030-1270440)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    UnwinNShawJZimmetPAlbertiKG. Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabetic Medicine 2002 19 708723. (https://doi.org/10.1046/j.1464-5491.2002.00835.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    CavagnolliGComerlatoJComerlatoCRenzPBGrossJLCamargoJL. HbA(1c) measurement for the diagnosis of diabetes: is it enough? Diabetic Medicine 2011 28 3135. (https://doi.org/10.1111/j.1464-5491.2010.03159.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    MoranLJMissoMLWildRANormanRJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Human Reproduction Update 2010 16 347363. (https://doi.org/10.1093/humupd/dmq001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    TabakAGHerderCRathmannWBrunnerEJKivimakiM. Prediabetes: a high-risk state for diabetes development. Lancet 2012 379 22792290. (https://doi.org/10.1016/S0140-6736(12)60283-9)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    BarryERobertsSOkeJVijayaraghavanSNormansellRGreenhalghT. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: systematic review and meta-analysis of screening tests and interventions. BMJ 2017 356 i6538. (https://doi.org/10.1136/bmj.i6538)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    LimSSNormanRJDaviesMJMoranLJ. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obesity Reviews 2013 14 95109. (https://doi.org/10.1111/j.1467-789X.2012.01053.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    BarberTMGoldingSJAlveyCWassJAKarpeFFranksSMcCarthyMI. Global adiposity rather than abnormal regional fat distribution characterizes women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2008 93 9991004. (https://doi.org/10.1210/jc.2007-2117)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    ClaseyJLBouchardCTeatesCDRiblettJEThornerMOHartmanMLWeltmanA. The use of anthropometric and dual-energy X-ray absorptiometry (DXA) measures to estimate total abdominal and abdominal visceral fat in men and women. Obesity Research 1999 7 256264. (https://doi.org/10.1002/j.1550-8528.1999.tb00404.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    GlintborgD. Endocrine and metabolic characteristics in polycystic ovary syndrome. Danish Medical Journal 2016 63 B5232.

  • 32

    ParadisiGSmithLBurtnerCLeamingRGarveyWTHookGJohnsonACroninJSteinbergHOBaronAD. Dual energy X-ray absorptiometry assessment of fat mass distribution and its association with the insulin resistance syndrome. Diabetes Care 1999 22 13101317. (https://doi.org/10.2337/diacare.22.8.1310)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    FrederiksenLNielsenTLWraaeKHagenCFrystykJFlyvbjergABrixenKAndersenM. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. Journal of Clinical Endocrinology and Metabolism 2009 94 40104015. (https://doi.org/10.1210/jc.2009-0980)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    NormanRJMastersLMilnerCRWangJXDaviesMJ. Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Human Reproduction 2001 16 19951998. (https://doi.org/10.1093/humrep/16.9.1995)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    GlintborgDPetersenMHRavnPHermannAPAndersenM. Comparison of regional fat mass measurement by whole body DXA scans and anthropometric measures to predict insulin resistance in women with polycystic ovary syndrome and controls. Acta Obstetricia et Gynecologica Scandinavica 2016 95 12351243. (https://doi.org/10.1111/aogs.12964)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Abdul-GhaniMAJenkinsonCPRichardsonDKTripathyDDefronzoRA. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: results from the Veterans Administration Genetic Epidemiology Study. Diabetes 2006 55 14301435. (https://doi.org/10.2337/db05-1200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    EhrmannDABarnesRBRosenfieldRLCavaghanMKImperialJ. Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 1999 22 141146. (https://doi.org/10.2337/diacare.22.1.141)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    LegroRSGnatukCLKunselmanARDunaifA. Changes in glucose tolerance over time in women with polycystic ovary syndrome: a controlled study. Journal of Clinical Endocrinology and Metabolism 2005 90 32363242. (https://doi.org/10.1210/jc.2004-1843)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    de WildeMAGoverdeAJVeltman-VerhulstSMEijkemansMJFranxAFauserBCKosterMP. Insulin action in women with polycystic ovary syndrome and its relation to gestational diabetes. Human Reproduction 2015 30 14471453. (https://doi.org/10.1093/humrep/dev072)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    LauenborgJHansenTJensenDMVestergaardHMolsted-PedersenLHornnesPLochtHPedersenODammP. Increasing incidence of diabetes after gestational diabetes: a long-term follow-up in a Danish population. Diabetes Care 2004 27 11941199. (https://doi.org/10.2337/diacare.27.5.1194)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    AraujoJRKeatingEMartelF. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Current Diabetes Reports 2015 15 569.

  • 42

    QinJZPangLHLiMJFanXJHuangRDChenHY. Obstetric complications in women with polycystic ovary syndrome: a systematic review and meta-analysis. Reproductive Biology and Endocrinology 2013 11 56. (https://doi.org/10.1186/1477-7827-11-56)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    FinnbogadottirSKGlintborgDJensenTKKyhlHBNohrEAAndersenM. Insulin resistance in pregnant women with and without polycystic ovary syndrome, and measures of body composition in offspring at birth and three years of age. Acta Obstetricia et Gynecologica Scandinavica 2017 96 13071314. (https://doi.org/10.1111/aogs.13200)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    WeiDZhangBShiYZhangLZhaoSDuYXuLLegroRSZhangHChenZJ. Effect of preconception impaired glucose tolerance on pregnancy outcomes in women with polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2017 102 38223829. (https://doi.org/10.1210/jc.2017-01294)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    OrioFJrPalombaSSpinelliLCascellaTTauchmanovaLZulloFLombardiGColaoA. The cardiovascular risk of young women with polycystic ovary syndrome: an observational, analytical, prospective case-control study. Journal of Clinical Endocrinology and Metabolism 2004 89 36963701. (https://doi.org/10.1210/jc.2003-032049)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    GlintborgDRubinKHNyboMAbrahamsenBAndersenM. Cardiovascular disease in a nationwide population of Danish women with polycystic ovary syndrome. Cardiovascular Diabetology 2018 17 37. (https://doi.org/10.1186/s12933-018-0680-5)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    GlintborgDAndersenM. Management of endocrine disease: morbidity in polycystic ovary syndrome. European Journal of Endocrinology 2017 176 R53R65. (https://doi.org/10.1530/EJE-16-0373)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    RezaeeMAsadiNPouralborzYGhodratMHabibiS. A review on glycosylated hemoglobin in polycystic ovary syndrome. Journal of Pediatric and Adolescent Gynecology 2016 29 562566. (https://doi.org/10.1016/j.jpag.2016.07.001)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    SelvinESteffesMWZhuHMatsushitaKWagenknechtLPankowJCoreshJBrancatiFL. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. New England Journal of Medicine 2010 362 800811. (https://doi.org/10.1056/NEJMoa0908359)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    KhawKTWarehamNBinghamSLubenRWelchADayN. Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Annals of Internal Medicine 2004 141 413420. (https://doi.org/10.7326/0003-4819-141-6-200409210-00006)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    LevitanEBLiuSStampferMJCookNRRexrodeKMRidkerPMBuringJEMansonJE. HbA1c measured in stored erythrocytes and mortality rate among middle-aged and older women. Diabetologia 2008 51 267275. (https://doi.org/10.1007/s00125-007-0882-y)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    SundstromPIMellembakkenJRPapunenLMPiltonenTPuurunenJTapanainenJSStener-VictorinEHirschbergALVankyERavnP et al. Should we individualize lipid profiling in women with polycystic ovary syndrome? Human Reproduction 2016 31 27912795. (https://doi.org/10.1093/humrep/dew228)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    ManiHLevyMJDaviesMJMorrisDHGrayLJBankartJBlackledgeHKhuntiKHowlettTA. Diabetes and cardiovascular events in women with polycystic ovary syndrome: a 20-year retrospective cohort study. Clinical Endocrinology 2013 78 926934. (https://doi.org/10.1111/cen.12068)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    GlintborgDMummHRavnPAndersenM. Age associated differences in prevalence of individual Rotterdam criteria and metabolic risk factors during reproductive age in 446 Caucasian women with polycystic ovary syndrome. Hormone and Metabolic Research 2012 44 694698. (https://doi.org/10.1055/s-0032-1304608)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55

    MorettiCLanzollaGMorettiMGnessiLCarminaE. Androgens and hypertension in men and women: a unifying view. Current Hypertension Reports 2017 19 44. (https://doi.org/10.1007/s11906-017-0740-3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    ValkenburgOSteegers-TheunissenRPSmedtsHPDallinga-ThieGMFauserBCWesterveldEHLavenJS. A more atherogenic serum lipoprotein profile is present in women with polycystic ovary syndrome: a case-control study. Journal of Clinical Endocrinology and Metabolism 2008 93 470476. (https://doi.org/10.1210/jc.2007-1756)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57

    WiltgenDSpritzerPM. Variation in metabolic and cardiovascular risk in women with different polycystic ovary syndrome phenotypes. Fertility and Sterility 2010 94 24932496. (https://doi.org/10.1016/j.fertnstert.2010.02.015)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    GunningMNFauserBCJM. Are women with polycystic ovary syndrome at increased cardiovascular disease risk later in life? Climacteric 2017 20 222227. (https://doi.org/10.1080/13697137.2017.1316256)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    MeunCFrancoOHDhanaKJaspersLMukaTLouwersYIkramMAFauserBCJMKavousiMLavenJSE. High androgens in postmenopausal women and the risk for atherosclerosis and cardiovascular disease: the Rotterdam Study. Journal of Clinical Endocrinology and Metabolism 2018 103 16221630. (https://doi.org/10.1210/jc.2017-02421)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    MallettSHalliganSThompsonMCollinsGSAltmanDG. Interpreting diagnostic accuracy studies for patient care. BMJ 2012 345 e3999. (https://doi.org/10.1136/bmj.e3999)

  • 61

    OllilaMEWestSKeinanen-KiukaanniemiSJokelainenJAuvinenJPuukkaKRuokonenAJarvelinMRTapanainenJSFranksS et al. Overweight and obese but not normal weight women with PCOS are at increased risk of Type 2 diabetes mellitus-a prospective, population-based cohort study. Human Reproduction 2017 32 423431. (https://doi.org/10.1093/humrep/dew329)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    LerchbaumESchwetzVGiulianiAObermayer-PietschB. Assessment of glucose metabolism in polycystic ovary syndrome: HbA1c or fasting glucose compared with the oral glucose tolerance test as a screening method. Human Reproduction 2013 28 25372544. (https://doi.org/10.1093/humrep/det255)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63

    VrbikovaJFantaMCibulaDVondraKBendlovaB. Impaired glucose metabolism in women with polycystic ovary syndrome. Gynecologic and Obstetric Investigation 2009 68 186190. (https://doi.org/10.1159/000232574)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    Celik CTasdemir NAbali RBastu EYilmaz M. Progression to impaired glucose tolerance or type 2 diabetes mellitus in polycystic ovary syndrome: a controlled follow-up study. Fertility and Sterility 2014 101 11231128. (https://doi.org/10.1016/j.fertnstert.2013.12.050)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65

    BoudreauxMYTalbottEOKipKEBrooksMMWitchelSF. Risk of T2DM and impaired fasting glucose among PCOS subjects: results of an 8-year follow-up. Current Diabetes Reports 2006 6 7783. (https://doi.org/10.1007/s11892-006-0056-1)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66

    LiWLiQ. Dysregulation of glucose metabolism even in Chinese PCOS women with normal glucose tolerance. Endocrine Journal 2012 59 765770. (https://doi.org/10.1507/endocrj.EJ12-0049)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67

    LiWMaLLiQ. Insulin resistance but not impaired beta-cell function: a key feature in Chinese normal-weight PCOS women with normal glucose regulation. Gynecological Endocrinology 2012 28 598601. (https://doi.org/10.3109/09513590.2011.650757)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68

    MoranLJNormanRJTeedeHJ. Metabolic risk in PCOS: phenotype and adiposity impact. Trends in Endocrinology and Metabolism 2015 26 136143. (https://doi.org/10.1016/j.tem.2014.12.003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69

    CorbouldA. Effects of androgens on insulin action in women: is androgen excess a component of female metabolic syndrome? Diabetes/Metabolism Research and Reviews 2008 24 520532. (https://doi.org/10.1002/dmrr.872)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70

    LiHLiLGuJLiYChenXYangD. Should all women with polycystic ovary syndrome be screened for metabolic parameters? A hospital-based observational study. PLoS ONE 2016 11 e0167036. (https://doi.org/10.1371/journal.pone.0167036)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71

    American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 2017 40 S11S24.

  • 72

    SchousboeKHenriksenJEKyvikKOSorensenTIHyltoftPP. Reproducibility of S-insulin and B-glucose responses in two identical oral glucose tolerance tests. Scandinavian Journal of Clinical and Laboratory Investigation 2002 62 623630. (https://doi.org/10.1080/003655102764654358)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73

    OlabiBBhopalR. Diagnosis of diabetes using the oral glucose tolerance test. BMJ 2009 339 b4354. (https://doi.org/10.1136/bmj.b4354)

  • 74

    SicreeRAZimmetPZDunstanDWCameronAJWelbornTAShawJE. Differences in height explain gender differences in the response to the oral glucose tolerance test – the AusDiab study. Diabetic Medicine 2008 25 296302. (https://doi.org/10.1111/j.1464-5491.2007.02362.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009 32 13271334.

    • Search Google Scholar
    • Export Citation
  • 76

    JorgensenLGBrandslundIHyltoftPP. Should we maintain the 95 percent reference intervals in the era of wellness testing? A concept paper. Clinical Chemistry and Laboratory Medicine 2004 42 747751.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77

    CinarNKizilarslanogluMCHarmanciAAksoyDYBozdagGDemirBYildizBO. Depression, anxiety and cardiometabolic risk in polycystic ovary syndrome. Human Reproduction 2011 26 33393345. (https://doi.org/10.1093/humrep/der338)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78

    AltinokMLGlintborgDDepontCRHallasJAndersenM. Prescription of antidepressants is increased in Danish patients with polycystic ovary syndrome and is associated with hyperandrogenism. A population-based cohort study. Clinical Endocrinology 2013 80 884889. (https://doi.org/10.1111/cen.12365)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79

    LibbyPRidkerPMMaseriA. Inflammation and atherosclerosis. Circulation 2002 105 11351143. (https://doi.org/10.1161/hbib902.104353)

  • 80

    EckelRHAlbertiKGGrundySMZimmetPZ. The metabolic syndrome. Lancet 2010 375 181183. (https://doi.org/10.1016/S0140-6736(09)61794-3)

  • 81

    FebbraioMHajjarDPSilversteinRL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. Journal of Clinical Investigation 2001 108 785791. (https://doi.org/10.1172/JCI14006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82

    GlintborgDHojlundKAndersenMHenriksenJEBeck-NielsenHHandbergA. Soluble CD36 and risk markers of insulin resistance and atherosclerosis are elevated in polycystic ovary syndrome and significantly reduced during pioglitazone treatment. Diabetes Care 2008 31 328334. (https://doi.org/10.2337/dbib7-1424)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83

    ToulisKAGoulisDGMintzioriGKintirakiEEukarpidisEMouratoglouSAPavlakiAStergianosSPoulasouchidouMTzellosTG et al. Meta-analysis of cardiovascular disease risk markers in women with polycystic ovary syndrome. Human Reproduction Update 2011 17 741760. (https://doi.org/10.1093/humupd/dmr025)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84

    KivimakiMTabakAG. Does addressing prediabetes help to improve population health? Lancet Diabetes and Endocrinology 2018 6 354356. (https://doi.org/10.1016/S2213-8587(18)30030-5).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85

    VistisenDWitteDRBrunnerEJKivimakiMTabakAJorgensenMEFaerchK. Risk of cardiovascular disease and death in individuals with prediabetes defined by different criteria: The Whitehall II Study. Diabetes Care 2018 41 899906. (https://doi.org/10.2337/dc17-2530)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86

    MoranLJPasqualiRTeedeHJHoegerKMNormanRJ. Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertility and Sterility 2009 92 19661982. (https://doi.org/10.1016/j.fertnstert.2008.09.018)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87

    CostelloMShresthaBEdenJSjoblomPJohnsonN. Insulin-sensitising drugs versus the combined oral contraceptive pill for hirsutism, acne and risk of diabetes, cardiovascular disease, and endometrial cancer in polycystic ovary syndrome. Cochrane Database of Systematic Reviews 2007 CD005552.

    • Search Google Scholar
    • Export Citation
  • 88

    GlintborgDAltinokMLMummHHermannAPRavnPAndersenM. Body composition is improved during 12 months’ treatment with metformin alone or combined with oral contraceptives compared with treatment with oral contraceptives in polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism 2014 99 25842591. (https://doi.org/10.1210/jc.2014-1135)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89

    GlintborgDMummHAltinokMLRichelsenBBruunJMAndersenM. Adiponectin, interleukin-6, monocyte chemoattractant protein-1, and regional fat mass during 12-month randomized treatment with metformin and/or oral contraceptives in polycystic ovary syndrome. Journal of Endocrinological Investigation 2014 37 757764. (https://doi.org/10.1007/s40618-014-0103-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90

    GlintborgDMummHHolstJJAndersenM. Effect of oral contraceptives and/or metformin on GLP-1 secretion and reactive hypoglycaemia in polycystic ovary syndrome. Endocrine Connections 2017 6 267277. (https://doi.org/10.1530/EC-17-0034)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91

    TomlinsonJMillwardAStenhouseEPinkneyJ. Type 2 diabetes and cardiovascular disease in polycystic ovary syndrome: what are the risks and can they be reduced? Diabetic Medicine 2010 27 498515. (https://doi.org/10.1111/j.1464-5491.2010.02994.x)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92

    SharmaSTWickhamEPIIINestlerJE. Changes in glucose tolerance with metformin treatment in polycystic ovary syndrome: a retrospective analysis. Endocrine Practices 2007 13 373379. (https://doi.org/10.4158/EP.13.4.373)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93

    SahinYUnluhizarciKYilmazsoyAYikilmazAAygenEKelestimurF. The effects of metformin on metabolic and cardiovascular risk factors in nonobese women with polycystic ovary syndrome. Clinical Endocrinology 2007 67 904908. (https://doi.org/10.1111/j.1365-2265.2007.02985.x)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94

    HalperinIJKumarSSStroupDFLaredoSE. The association between the combined oral contraceptive pill and insulin resistance, dysglycemia and dyslipidemia in women with polycystic ovary syndrome: a systematic review and meta-analysis of observational studies. Human Reproduction 2011 26 191201. (https://doi.org/10.1093/humrep/deq301)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95

    Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes Research and Clinical Practice 2014 103 341363.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96

    BenhalimaKMathieuCVanAADammPDevliegerRMahmoodTDunneF. Survey by the European Board and College of Obstetrics and Gynaecology on screening for gestational diabetes in Europe. European Journal of Obstetrics and Gynecology and Reproductive Biology 2016 201 197202. (https://doi.org/10.1016/j.ejogrb.2016.04.003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97

    JensenDMMolsted-PedersenLBeck-NielsenHWestergaardJGOvesenPDammP. Screening for gestational diabetes mellitus by a model based on risk indicators: a prospective study. American Journal of Obstetrics and Gynecology 2003 189 13831388. (https://doi.org/10.1067/S0002-9378(03)00601-X)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98

    KyhlHBJensenTKBaringtonTBuhlSNorbergLAJorgensenJSJensenDFChristesenHTLamontRFHusbyS. The Odense Child Cohort: aims, design, and cohort profile. Paediatric and Perinatal Epidemiology 2015 29 250258. (https://doi.org/10.1111/ppe.12183)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99

    LoJCYangJGundersonEPHararahMKGonzalezJRFerraraA. Risk of type 2 diabetes mellitus following gestational diabetes pregnancy in women with polycystic ovary syndrome. Journal of Diabetes Research 2017 2017 5250162. (https://doi.org/10.1155/2017/5250162)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100

    Escobar-MorrealeHFSantacruzELuque-RamirezMBotella CarreteroJI. Prevalence of ‘obesity-associated gonadal dysfunction’ in severely obese men and women and its resolution after bariatric surgery: a systematic review and meta-analysis. Human Reproduction Update 2017 23 390408. (https://doi.org/10.1093/humupd/dmx012)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101

    SkublenyDSwitzerNJGillRSDykstraMShiXSagleMAdeGCBirchDWKarmaliS. The impact of bariatric surgery on polycystic ovary syndrome: a systematic review and meta-analysis. Obesity Surgery 2016 26 169176. (https://doi.org/10.1007/s11695-015-1902-5)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102

    KjaerMMMadsbadSHougaardDMCohenASNilasL. The impact of gastric bypass surgery on sex hormones and menstrual cycles in premenopausal women. Gynecological Endocrinology 2017 33 160163. (https://doi.org/10.1080/09513590.2016.1236243)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103

    GonzalezILecubeARubioMAGarcia-LunaPP. Pregnancy after bariatric surgery: improving outcomes for mother and child. International Journal of Women’s Health 2016 8 721729. (https://doi.org/10.2147/IJWH.S99970)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104

    AdamSAmmoriBSoranHSyedAA. Pregnancy after bariatric surgery: screening for gestational diabetes. BMJ 2017 356 j533. (https://doi.org/10.1136/bmj.j533)

  • 105

    FeichtingerMStoppTHofmannSSpringerSPilsSKautzky-WillerAKissHEppelWTuraABozkurtLGoblCS. Altered glucose profiles and risk for hypoglycaemia during oral glucose tolerance testing in pregnancies after gastric bypass surgery. Diabetologia 2017 60 153157. (https://doi.org/10.1007/s00125-016-4128-8)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106

    KollmannMMartinsWPLimaMLCraciunasLNastriCORichardsonARaine-FenningN. Strategies for improving outcome of assisted reproduction in women with polycystic ovary syndrome: systematic review and meta-analysis. Ultrasound in Obstetrics and Gynecology 2016 48 709718. (https://doi.org/10.1002/uog.15898)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107

    VankyEStridsklevSHeimstadRRomundstadPSkogoyKKleggetveitOHjelleSvonBPEikelandTFloKBergKF et al. Metformin versus placebo from first trimester to delivery in polycystic ovary syndrome: a randomized, controlled multicenter study. Journal of Clinical Endocrinology and Metabolism 2010 95 E448E455. (https://doi.org/10.1210/jc.2010-0853)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108

    Hjorth-HansenASalvesenOEngen HanemLGEggeboTSalvesenKAVankyEOdegardR. Fetal growth and birth anthropometrics in metformin-exposed offspring born to mothers with PCOS. Journal of Clinical Endocrinology and Metabolism 2018 103 740747. (https://doi.org/10.1210/jc.2017-01191)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109

    Engen HanemLGStridsklevSJuliussonPBSalvesenORoelantsMCarlsenSMOdegardRVankyE. Metformin use in PCOS pregnancies increases the risk of offspring overweight at 4 years of age; follow-up of two RCTs. Journal of Clinical Endocrinology and Metabolism 2018 103 16121621. (https://doi.org/10.1210/jc.2017-02419)

    • Crossref
    • Search Google Scholar
    • Export Citation

Cited By

PubMed

Google Scholar