Effects of nitric oxide on steroidogenesis in porcine granulosa cells during different stages of follicular development

in European Journal of Endocrinology

BACKGROUND: We have previously demonstrated that nitric oxide (NO) inhibits steroidogenesis via a cGMP-independent process, by inhibiting P450 aromatase activity in porcine granulosa cells (PGCs) derived from medium-sized (3--5 mm) ovarian follicles (M-PGC). OBJECTIVE: To determine whether the NO/NO synthase (NOS) system exerts any significant effects on steroidogenesis in PGCs derived from small follicles (<3 mm) (S-PGC) in comparison with those derived from medium follicles. DESIGN AND METHODS: PGCs, namely S-PGC and M-PGC, were incubated with the NO donor, NOC18, and a competitive blocker of NOS, N(3)-monomethyl-l-arginine (LNMMA), either alone or in the presence of FSH (200 ng/ml) or hCG (5 IU/ml). RESULTS: NOC18 significantly (P<0.01--0.001) suppressed basal (unstimulated) and gonadotropin-stimulated estradiol (E2) release from both S-PGC and M-PGC in a 2-h culture. NOC18 significantly (P<0.01--0.001) decreased basal and gonadotropin-stimulated progesterone release from S-PGC, but not from M-PGC. In addition, NOC18 significantly (P<0.05--0.001) inhibited aromatase activity in S-PGC. LNMMA had a significantly (P<0.01--0.001) stimulatory effect on the basal release of E2 and progesterone from M-PGC; however, it had no significant effect on basal steroidogenesis in S-PGC in a 24-h culture. In the presence of gonadotropin, LNMMA significantly (P<0.01--0.001) stimulated the release of E2 and progesterone from both S- and M-PGC, and this stimulatory effect was weaker in S-PGC than in M-PGC. These results demonstrate that NO inhibits E2 secretion by directly inhibiting the aromatase activity in S-PGC, as in M-PGC. It has been shown that the NO system suppresses the differentiation of S-PGC; however, the extent of suppression decreased with the progression of follicular growth. In addition, the activity of NOS in S-PGC was weaker than that in M-PGC. CONCLUSION: We strongly suggest that the NO/NOS system in PGC regulates steroidogenesis differently during different phase of follicular development.

If the inline PDF is not rendering correctly, you can download the PDF file here.


     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 23 2
PDF Downloads 117 28 2