New mechanisms of insulin resistance at the nuclear level

in European Journal of Endocrinology
Jérôme Bertherat
Search for other papers by Jérôme Bertherat in
Current site
Google Scholar
View More View Less
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

Resistance to hormone action is often explained by alterations in hormone receptors, transduction mechanisms or enzymes. Two recent reports suggest that, in the case of insulin resistance, alterations in gene expression control at the nuclear level (in particular, transcriptional regulation) might also represent a potential mechanism for resistance to hormone action in human disease. The transcriptional regulation of gene expression is controlled by regulatory proteins known as transcription factors (or trans-acting factors). They bind to defined DNA sequences in the regulatory regions of specific genes (cis-elements). It was tempting to speculate that alteration in trans-acting factors or ciselements implicated in insulin action could result in insulin resistance.

Apolipoprotein C-III (apo C-III) is present in triglyceride-rich lipoproteins. In diabetic mice, a clear increase in apo C-III is observed. Transcription of the apo C-III gene is inhibited by insulin. Several observations suggest that apo C-III overexpression might be


  • Collapse
  • Expand

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 50 44 1
Full Text Views 0 0 0
PDF Downloads 1 1 0