IGF-I infused at pharmacological doses in healthy men markedly decreases C-peptide levels, whereas insulin levels remain within the normal range. One possible explanation is decreased insulin removal. As the liver is the major site of insulin degradation, we studied insulin degradation by HepG2 cells in the presence of IGF. We found that IGF-I at a concentration of 130 nmol/l inhibits insulin degradation by HepG2 cells when the initial insulin concentration is 0.34 nmol/l. The effect of IGF-I on insulin degradation is dose-dependent and the rate of insulin degradation is dependent on the insulin concentration. IGF-II is 6 to 10 times more potent than IGF-I in inhibiting 125I-insulin binding to HepG2 cells and in protecting insulin from being degraded. Thus, IGF-I and IGF-II inhibit insulin degradation most likely by competing for binding at insulin binding sites of liver cells.
EJE is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 1 | 1 | 0 |
PDF Downloads | 1 | 1 | 0 |