Nuclear reverse T3 binding sites: an artefact of isolation?

in European Journal of Endocrinology
Authors:
R. Hartong
Search for other papers by R. Hartong in
Current site
Google Scholar
PubMed
Close
and
W. M. Wiersinga
Search for other papers by W. M. Wiersinga in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

USD  $0.01
USD  $0.01

Abstract. Binding of [125I]rT3 to rat liver nuclear extracts prepared in 0.25 m sucrose could be abolished by a prior wash of the nuclei with 2.4 m sucrose. Analysis of mixtures containing [125I]rT3 and nuclear extracts (0.25 m sucrose) showed that after incubation for 2 h at 22°C, degradation of rT3 into 3,3'-T2 and I- had taken place. It appears that the presence of 125I- in these mixtures can account for the previously observed 'binding' of [125I]rT3 to these nuclear extracts.

Further characterization of the deiodination process in nuclear extracts showed: 1) inactivation by heating, 2) production of equimolar amounts of I- and 3,3'-T2, 3) stimulation by sulfhydryl compounds and inhibition by propylthiouracil in a fashion similar to the microsomal iodothyronine 5'-deiodinase (ping-pong mechanism).

We conclude that the observed deiodination of rT3 in hepatic nuclear extracts is of enzymatic nature, due to contamination of the nuclear preparation by microsomal iodothyronine 5'-deiodinase. However, since the nuclei are prepared in the presence of the non-ionic detergent Triton X-100, a nucleus associated deiodinase activity cannot be totally excluded.

 

  • Collapse
  • Expand

     European Society of Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 60 50 0
Full Text Views 0 0 0
PDF Downloads 2 2 0